分析 如圖所示,AO′=$\frac{\sqrt{3}}{3}×12$=4$\sqrt{3}$,PO=$\frac{\sqrt{6}}{3}$×12=4$\sqrt{6}$,利用勾股定理,即可求出四面體PABC外接球半徑.,即可求出球心O到平面ABC的距離.
解答 解:如圖所示,AO′=$\frac{\sqrt{3}}{3}×12$=4$\sqrt{3}$,PO=$\frac{\sqrt{6}}{3}$×12=4$\sqrt{6}$,
設(shè)四面體PABC外接球半徑為R,則
R2=(4$\sqrt{6}$-R)2+(4$\sqrt{3}$)2,
∴R=3$\sqrt{6}$,
∴球心O到平面ABC的距離為OO′=$\sqrt{6}$.
故答案為:$\sqrt{6}$.
點評 本題考查四面體PABC外接球半徑,考查球心O到平面ABC的距離,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14 | B. | $\frac{{21\sqrt{3}}}{2}$ | C. | 22 | D. | $\frac{{27\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4-$\frac{π}{2}$ | B. | 8-$\frac{4π}{3}$ | C. | 8-π | D. | 8-2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{64}{3}$ | B. | $\frac{32}{3}$ | C. | $\frac{64}{3}$或32 | D. | $\frac{32}{3}$或$\frac{64}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
城市 | A | B | C | D | E |
4S店個數(shù)x | 3 | 4 | 6 | 5 | 2 |
銷量y(臺) | 28 | 29 | 37 | 31 | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橢圓 | B. | 圓 | C. | 拋物線 | D. | 雙曲線 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com