9.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+3t\\ y=2-4t\end{array}$ (t為參數(shù)),它與曲線C:(y-2)2-x2=1交于A、B兩點(diǎn).
(1)求|AB|的長(zhǎng);
(2)求點(diǎn)P(-1,2)到線段AB中點(diǎn)C的距離.

分析 (1)寫出直線l的標(biāo)準(zhǔn)參數(shù)方程,代入曲線普通方程,利用根與系數(shù)的關(guān)系和參數(shù)的幾何意義得出|AB|;
(2)求出C對(duì)應(yīng)的參數(shù)即為P到C點(diǎn)的距離|PC|.

解答 解:(1)直線l的標(biāo)準(zhǔn)參數(shù)方程為$\left\{\begin{array}{l}{x=-1-\frac{3}{5}t}\\{y=2+\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),
代入曲線方程并化簡(jiǎn)得7t2-30t-50=0.
設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1、t2,
則t1+t2=$\frac{30}{7}$,t1t2=-$\frac{50}{7}$.
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\frac{10\sqrt{23}}{7}$.
(2)根據(jù)中點(diǎn)坐標(biāo)的性質(zhì)可得AB中點(diǎn)C對(duì)應(yīng)的參數(shù)為$\frac{{t}_{1}+{t}_{2}}{2}$=$\frac{15}{7}$.
∴由t的幾何意義可得點(diǎn)P(-1,2)到線段AB中點(diǎn)C的距離為$\frac{15}{7}$.

點(diǎn)評(píng) 本題考查了參數(shù)方程的幾何意義,距離計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3+ax2+bx+c在x=-1和x=1時(shí)取得極值,且f(-2)=4.
(1)求函數(shù)f(x)的表達(dá)式;
(2)求函數(shù)f(x)在區(qū)間[-3,3]上的極值;
(3)若關(guān)于x的方程f(x)-a=0在實(shí)數(shù)集R上只有一個(gè)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow a$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,-cosωx),(ω>0),函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$+$\frac{1}{2}$,直線x=x1,x=x2是y=f(x)圖象的任意兩條對(duì)稱軸,且|x1-x2|的最小值為$\frac{π}{4}$.
(1)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(2)若cosx≥$\frac{{\sqrt{2}}}{2}$,x∈(0,π),且f(x)-m=0有兩個(gè)實(shí)根x1,x2
①求實(shí)數(shù)m的取值范圍;
②求sin(x1+x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知M的極坐標(biāo)為(2,$\frac{4π}{3}$),則M的直角坐標(biāo)為(-1,-$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知一個(gè)三角形的三邊邊長(zhǎng)分別是3,4,5,設(shè)計(jì)一個(gè)算法,求出它的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若(1+2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),則$\frac{{a}_{1}}{2}$-$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$-…-$\frac{{a}_{2016}}{{2}^{2016}}$的值為( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.△ABC內(nèi)有任意三點(diǎn)不共線的2016個(gè)點(diǎn),加上A,B,C三個(gè)頂點(diǎn),共2019個(gè)點(diǎn),把這2019個(gè)點(diǎn)連線形成互不重疊(即任意兩個(gè)三角形之間互不覆蓋)的小三角形,則一共可以形成小三角形的個(gè)數(shù)為(  )
A.4033B.4035C.4037D.4039

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知一個(gè)扇形的周長(zhǎng)是6cm,該扇形的中心角是1弧度,則該扇形的面積為(  )cm2
A.2B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知復(fù)數(shù)z=(2m2-3m-2)+(3m2-4m-4)i其中m∈R.當(dāng)m為何值時(shí),z為:
(1)實(shí)數(shù);     
(2)虛數(shù);    
(3)純虛數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案