(本小題滿分14分)設b>0,橢圓方程為,拋物線方程為.如圖4所示,過點F(0,b+2)作x軸的平行線,與拋物線在

第一象限的交點為G.已知拋物線在點G的切線經(jīng)

過橢圓的右焦點.

(1)求滿足條件的橢圓方程和拋物線方程;

(2)設A,B分別是橢圓長軸的左、右端點,試探究在

拋物線上是否存在點P,使得△ABP為直角三角形?

若存在,請指出共有幾個這樣的點?并說明理由

(不必具體求出這些點的坐標).

滿足條件的橢圓方程和拋物線方程分別為

4個


解析:

(1)解方程組,

         所以點G的坐標為G(4,b+2),

         由,得,求導數(shù)得,

        于是,拋物線在點G的切線l的斜率為,

        又橢圓,即c=b,所以橢圓的右焦點為(b,0)

        由切線l過點,可知,解得b=1.

         所以滿足條件的橢圓方程和拋物線方程分別為

(2) 在拋物線上存在點P,使得△ABP為直角三角形。且這樣的點有4個。

證明:分別過點A、B做y軸的平行線,交拋物線于M,N點,則∠MAB=90O,∠NBA=90O,  

      顯然M,N在拋物線上,且使得△ABM,△ABN為直角三角形。

     設拋物線的頂點為D,則點|OD|=1,又|OA|=|OB|=,顯然∠ADB>90O.

     所以,在拋物線上位于點D、M和點D、N之間,一定分別存在一個點P,使得∠APB=90O.

     綜上所述, 滿足條件的點共有4個。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案