【題目】學校射擊隊的某一選手射擊一次,其命中環(huán)數(shù)的概率如表:

命中環(huán)數(shù)

10環(huán)

9環(huán)

8環(huán)

7環(huán)

概率

0.32

0.28

0.18

0.12

求該選手射擊一次,

(1)命中9環(huán)或10環(huán)的概率.

(2)至少命中8環(huán)的概率.

(3)命中不足8環(huán)的概率.

【答案】(1)0.6;(2)0.78;(3)0.22.

【解析】試題分析:(1)事件射擊一次,命中環(huán)為, ,則事件彼此互斥,然后根據(jù)互斥事件的概率計算方法求和即可;(2)“射擊一次,至少命中環(huán)包括命中環(huán) 環(huán), 環(huán)三個事件,這三個事件是互斥的然后根據(jù)互斥事件的概率計算方法求和即可;(3)“射擊一次,命中不足環(huán)是事件: “射擊一次,至少命中環(huán)的對立事件,根據(jù)對立事件的概率公式計算即可.

試題解析:記“射擊一次,命中k環(huán)”為事件Ak(k=7,8,9,10).

(1)因為A9與A10互斥

所以P(A9+A10)=P(A9)+P(A10)=0.28+0.32=0.60.

(2)記“至少命中8環(huán)”為事件B.

B=A8+A9+A10,又A8,A9,A10兩兩互斥,

所以P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.

(3)記“命中不足8環(huán)”為事件C.則事件C與事件B是對立事件.

所以P(C)=1-P(B)=1-0.78=0.22.

【名師點晴】本題主要考查互斥事件的概率公式以及對立事件的概率公式,屬于中檔題. 求解互斥事件、對立事件的概率問題時,一要先利用條件判斷所給的事件是互斥事件,還是對立事件;二要將所求事件的概率轉化為互斥事件、對立事件的概率;三要準確利用互斥事件、對立事件的概率公式去計算所求事件的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的四棱錐中,四邊形為正方形, 平面,且分別為的中點, .

證明:(1)平面;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當今信息時代,眾多高中生也配上了手機.某校為研究經(jīng)常使用手機是否對學習成績有影響,隨機抽取高三年級50名理科生的一次數(shù)學周練成績,并制成下面的列聯(lián)表:

及格

不及格

合計

很少使用手機

20

6

26

經(jīng)常使用手機

10

14

24

合計

30

20

50

(1)判斷是否有的把握認為經(jīng)常使用手機對學習成績有影響?

(2)從這50人中,選取一名很少使用手機的同學記為甲和一名經(jīng)常使用手機的同學記為乙,解一道數(shù)學題,甲、乙獨立解出此題的概率分別為,且 ,若,則此二人適合結為學習上互幫互助的“學習師徒”,記為兩人中解出此題的人數(shù),若的數(shù)學期望,問兩人是否適合結為“學習師徒”?

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

參考公式及數(shù)據(jù): ,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中, 為正三角形,四邊形為矩形,平面 平面, 分別為的中點。

(Ⅰ)求證: //平面

(Ⅱ)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).

(1)討論函數(shù)y=f(x)g(x)的奇偶性;

(2)當b=0時,判斷函數(shù)y= 在(﹣1,1)上的單調性,并說明理由;

(3)設h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為實數(shù),函數(shù).

1)求的極值;

2)當在什么范圍內取值時,曲線軸僅有一個交點?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種心臟手術,成功率為,現(xiàn)準備進行例此種手術,試估計

(1)恰好成功例的概率.

(2)恰好成功例的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某地區(qū)心肺疾病是否與性別有關,在某醫(yī)院隨機地對入院

的50人進行了問卷調查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

20

5

25

10

15

25

合計

30

20

50

(1)用分層抽樣的方法在患心肺疾病的人群中抽取6人,其中男性抽多少人?

(2)在上述抽取的6人中選2人,求恰有一名女性的概率;

(3)為了研究心肺疾病是否與性別有關,請計算出統(tǒng)計量,判斷是否有的把握認為

患心肺疾病與性別有關?

右面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知曲線為參數(shù)),在以為極點, 軸正半軸為極軸的極坐標系中,曲線,曲線.

(1)求曲線的交點的直角坐標;

(2)設點, 分別為曲線上的動點,求的最小值.

查看答案和解析>>

同步練習冊答案