1.在一次抽樣調(diào)査中測得樣本的6組數(shù)據(jù),得到一個變量y關(guān)于x的回歸方程模型,其對應(yīng)的數(shù)值如表
x234567
y3.002.482.081.861.481.10
(Ⅰ)請用相關(guān)系數(shù)r加以說明y與x之間存在線性相關(guān)關(guān)系(當(dāng)|r|>0.81時,說明y與x之間具有線性相關(guān)關(guān)系);
(Ⅱ)根據(jù)(I )的判斷結(jié)果,建立y關(guān)于x的回歸方程并預(yù)測當(dāng)x=9時,對應(yīng)的y值為多少(b精確到0.01)
附參考公式:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘法估計公式分別為:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,相關(guān)系數(shù)r公式為:r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
參考數(shù)據(jù):$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=47.64,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$=1.53.

分析 (Ⅰ)由題意計算$\overline{x}$、$\overline{y}$,利用公式計算相關(guān)系數(shù)r,由此說明x與y之間存在相關(guān)關(guān)系;
(Ⅱ)求出回歸系數(shù)$\stackrel{∧}$、$\stackrel{∧}{a}$,寫出回歸方程,利用回歸方程求出x=9時$\stackrel{∧}{y}$的值.

解答 解:(Ⅰ)由題意得$\overline{x}$=$\frac{1}{6}$(2+3+4+5+6+7)=4.5,
$\overline{y}$=$\frac{1}{6}$(3+2.48+2.08+1.86+1.48+1.10)=2,

且$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=47.64,$\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$=1.53;
∴相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$=$\frac{47.64-6×4.5×2}{4.18×1.53}$=-$\frac{6.36}{6.3954}$≈-0.99,
由|r|>0.81,說明x與y之間存在相關(guān)關(guān)系;
(Ⅱ)由$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{47.64-6×4.5×2}{139-6{×4.5}^{2}}$=-$\frac{6.36}{17.5}$≈-0.36,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=2-(-0.36)×4.5=3.62,
所以x與y的回歸方程為$\stackrel{∧}{y}$=-0.36x+3.62,
將x=9代入線性回歸方程得$\stackrel{∧}{y}$=-0.36×9+3.62=0.38.

點評 本題考查了線性回歸方程的應(yīng)用問題,也考查了相關(guān)系數(shù)的應(yīng)用問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$m=\int_0^2{({2x+1})dx}$,則${({\frac{1}{x}+\sqrt{x}})^m}$的展開式中常數(shù)項為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某單位有青年職工35人,中年職工25人,老年職工15人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為( 。
A.7B.15C.25D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|2x-1>0},B={-1,0,1,2},則(∁UA)∩B( 。
A.{1,2}B.{0,1}C.{-1,0}D.{-1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x1,x2,x3是函數(shù)f(x)=$\frac{kx}{{e}^{x}}$-lnx+x(k∈R)的三個極值點,且0<x1<x2<x3,有下列四個關(guān)于函數(shù)f(x)的結(jié)論:①k>e2;②x2=1;③f(x1)=f(x3);④f(x)>2恒成立,其中正確的序號為②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某單位共有10名員工,他們某年的收入如表:
員工編號12345678910
年薪(萬元)33.5455.56.577.5850
(Ⅰ)從該單位中任取2人,此2人中年薪收入高于5萬的人數(shù)記為X,求X的分布列和期望;
(Ⅱ)已知員工年薪收入y與工作年限x成正相關(guān)關(guān)系,若某員工工作第一年至第四年的年薪如表:
 工作年限 1
 年薪(萬元) 3.0 4.2 5.6 7.2
預(yù)測該員工第五年的年薪為多少?
附:線性回歸方程${\;}_{y}^{-}$=bx+a中細(xì)數(shù)參考公式和參考數(shù)據(jù)分別為:
${\;}_^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})({y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}({x}_{i}{-}_{x}^{-})^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-bx,其中${\;}_{x}^{-}$,${\;}_{y}^{-}$為樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某三棱錐的三視圖如圖所示,則該三棱錐的外接球表面積是( 。
A.$\frac{13π}{4}$B.$\frac{25π}{4}$C.$\frac{29π}{4}$D.$\frac{41π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知定義在R上的奇函數(shù)f(x),當(dāng)x<0時,f(x)=2x-3.若f(a)=7,實數(shù)a的值是2$\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=x2+(2a-1)x+1,若對區(qū)間(2,+∞)內(nèi)的任意兩個不等實數(shù)x1,x2都有$\frac{f({x}_{1}-1)-f({x}_{2}-1)}{{x}_{1}-{x}_{2}}$>0,則實數(shù)a的取值范圍是( 。
A.(-∞,-$\frac{1}{2}$]B.[-$\frac{5}{2}$,+∞)C.[-$\frac{1}{2}$,+∞)D.(-∞,$-\frac{5}{2}$]

查看答案和解析>>

同步練習(xí)冊答案