過(guò)雙曲線
x2
3
-
y2
6
=1的右焦點(diǎn)F2,傾斜角為30°的直線交雙曲線于A,B兩點(diǎn),F(xiàn)1為左焦點(diǎn),求:
(1)|AB|;      
(2)△AF1B的周長(zhǎng).
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)確定直線AB的方程,代入雙曲線方程,求出A,B的坐標(biāo),即可求線段AB的長(zhǎng);
(2)利用雙曲線的定義,即可求△AF1B的周長(zhǎng).
解答: 解:(1)由雙曲線的方程得F1(-3,0),F(xiàn)2(3,0),直線AB的方程為y=
3
3
(x-3)①(2分)
將其代入雙曲線方程消去y得,5x2+6x-27=0,解之得x1=-3,x2=1.8.(4分)
將x1,x2代入①,得y1=-2
3
,y2=-
2
3
5
,故A(-3,-2
3
),B(1.8,-
2
3
5
),
故|AB|=
16
5
3
.(8分)
(2)周長(zhǎng)=|AB|+|AF1|+|BF1|=8
3
.(12分)
點(diǎn)評(píng):本題考查直線與雙曲線的位置關(guān)系,考查雙曲線的定義,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,點(diǎn)M是SD的中點(diǎn),AN⊥SC,且交SC于點(diǎn)N.
(Ⅰ)求證:SB∥平面ACM;
(Ⅱ)求證:平面SAC⊥平面AMN;
(Ⅲ)求二面角D-AC-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系O-xyz中,點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的射影,則|OB|等于(  )
A、
14
B、
13
C、
10
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=1+
3
2
t
(t為參數(shù)).曲線C的極坐標(biāo)方程為ρ=2
2
sin(θ+
π
4
)
.直線l與曲線C交于A,B兩點(diǎn),與y軸交于點(diǎn) P.
(1)求曲線C的直角坐標(biāo)方程;
(2)求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

填表:寫(xiě)出程序框圖中的圖形符號(hào)的名稱.
圖形符號(hào)名  稱意        義
表示一個(gè)算法的開(kāi)始或者結(jié)束
表示算法中數(shù)據(jù)的輸入或者結(jié)果的輸出
賦值,執(zhí)行計(jì)算語(yǔ)句,傳送結(jié)果
根據(jù)給定的條件判斷.當(dāng)條件成立時(shí),程序沿“是”方向執(zhí)行,否則沿“否”方向執(zhí)行
流程進(jìn)行的方向

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,直線AC到平面A1B1C1D1的距離為( 。
A、
2
2
B、
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線漸近線方程:y=±2x,焦點(diǎn)是F(0,±
10
),則雙曲線標(biāo)準(zhǔn)方程是( 。
A、
y2
8
-
x2
2
=1
B、
x2
8
-
y2
2
=1
C、
y2
2
-
x2
8
=1
D、
x2
2
-
y2
8
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從一副54張的撲克牌中抽取1張,那么抽出的一張剛好是8的概率( 。
A、
1
54
B、
1
9
C、
2
27
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系下,到點(diǎn)A(-2,3)的距離和直線x+y-1=0的距離相等的點(diǎn)的軌跡方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案