20.設(shè)定義在R上的函數(shù)f(x)=|x|,則f(x)(  )
A.是奇函數(shù),又是增函數(shù)B.是偶函數(shù),又是增函數(shù)
C.是奇函數(shù),又是減函數(shù)D.是偶函數(shù).但不是減函數(shù)

分析 根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.

解答 解:f(-x)=|-x|=|x|=f(x),
則函數(shù)f(x)是偶函數(shù),但函數(shù)不是單調(diào)函數(shù),
故選:D

點(diǎn)評 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,利用函數(shù)的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某班在5男生4女生中選擇4人參加演講比賽,選中的4人中有男有女,且男生甲和女生乙最少選中一人,則不同的選擇方法有( 。
A.91種B.90種C.89種D.86種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個(gè)等差數(shù)列{an}的前n項(xiàng)和為12,前2n項(xiàng)和為24,則前3n項(xiàng)和為( 。
A.36B.48C.38D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點(diǎn)A(0,2)的圓與直線x-y-4=0相切于P(6,2),則圓的方程是( 。
A.(x-5)2+(y-3)2=18B.(x-5)2+(y-3)2=9C.(x-3)2+(y-5)2=18D.(x-3)2+(y-5)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)y=f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=2x+1,則f(-2)=( 。
A.-3B.3C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{{{{(x+1)}^2}}}{{\sqrt{x+2}}}$的定義域是(-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知?jiǎng)狱c(diǎn)P(x,y)與兩定點(diǎn)M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)當(dāng)軌跡C為焦點(diǎn)在y軸上的橢圓時(shí),求λ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)集合A={x|x2+x≤0,x∈R},則集合A∩Z中有2個(gè)元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-$\frac{(x-1)^{2}}{2}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x>1時(shí),f(x)<x-1
(3)若存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)>k(x-1)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案