6.參數(shù)方程$\left\{{\begin{array}{l}{x=4t+1}\\{y=-2t-5}\end{array}}\right.$(t為參數(shù))化為普通方程為x+2y+9=0.

分析 由y=-2t-5,可得2y=-4t-10,與x=4t+1相加即可得出普通方程.

解答 解:由y=-2t-5,可得2y=-4t-10,與x=4t+1相加可得:x+2y=-9,即x+2y+9=0.
故答案為:x+2y+9=0.

點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程的方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)y=f′(x)的單調(diào)減區(qū)間為(  )
A.[0,3)B.[-2,3]C.(-∞,$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,兩個(gè)以O(shè)為圓心的同心圓,AB切大圓于B,AC切小圓于C,交大圓于D,E,AB=12,AO=15,AD=8,求兩圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)f(x)=$\frac{lnx}{x}$,e<a<b,則f(a),f(b)的大小關(guān)系為f(a)>f(b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知tanα=2,求
(1)$\frac{2sin(α-π)3cos(-α)}{4sin(\frac{π}{2}+α)-9cos(α-\frac{3π}{2})}$;
(2)4sin2α-3sinαcosα-5cos2α;
(3)$\frac{1+sin2α}{1+sin2α+cos2α}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線$\left\{\begin{array}{l}{x=3+tcos70°}\\{y=-tsin70}\end{array}\right.$(t為參數(shù))的傾斜角為(  )
A.20°B.70°C.110°D.160°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)=lnx+$\frac{m}{x}$,m∈R,若對(duì)任意x2>x1>0,f(x2)-f(x1)<x2-x1恒成立,則實(shí)數(shù)m的取值范圍是[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)n為正整數(shù),經(jīng)計(jì)算得:f(2)>$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,觀察上述結(jié)果,由此可推出第n個(gè)式子為f(2n)>$\frac{n+2}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{e}$1,$\overrightarrow{e}$2為平面上的單位向量,$\overrightarrow{e}$1與$\overrightarrow{e}$2的起點(diǎn)均為坐標(biāo)原點(diǎn)O,$\overrightarrow{e}$1與$\overrightarrow{e}$2夾角為$\frac{π}{3}$.平面區(qū)域D由所有滿足$\overrightarrow{OP}$=λ$\overrightarrow{e}$1+μ$\overrightarrow{e}$2的點(diǎn)P組成,其中$\left\{{\begin{array}{l}{λ+μ≤1}\\{0≤λ}\\{0≤μ}\end{array}}\right.$,那么平面區(qū)域D的面積為( 。
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案