18.設函數(shù)f(x)=lnx+$\frac{m}{x}$,m∈R,若對任意x2>x1>0,f(x2)-f(x1)<x2-x1恒成立,則實數(shù)m的取值范圍是[$\frac{1}{4}$,+∞).

分析 問題轉(zhuǎn)化為函數(shù)g(x)=f(x)-x=lnx+$\frac{m}{x}$-x在(0,+∞)遞減,即m≥x-x2在(0,+∞)恒成立,求出m的范圍即可.

解答 解:若對任意x2>x1>0,f(x2)-f(x1)<x2-x1恒成立,
即若對任意x2>x1>0,f(x2)-x2<f(x1)-x1恒成立,
即函數(shù)g(x)=f(x)-x=lnx+$\frac{m}{x}$-x在(0,+∞)遞減,
g′(x)=$\frac{{-x}^{2}+x-m}{{x}^{2}}$≤0在(0,+∞)恒成立,
即m≥x-x2在(0,+∞)恒成立,
而x-x2=-${(x-\frac{1}{2})}^{2}$+$\frac{1}{4}$≤$\frac{1}{4}$,
∴m≥$\frac{1}{4}$,
故答案為:[$\frac{1}{4}$,+∞).

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及函數(shù)恒成立問題,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.在極坐標系中,圓C的方程為ρ=2acosθ(a≠0),以極點為坐標原點,極軸為x軸正半軸建立平面直角坐標系,設直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}\right.$(t為參數(shù)).
(1)求圓C的直角坐標方程(化為標準方程)和直線l的極坐標方程;
(2)若直線l與圓C只有一個公共點,且a<1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關(guān)于x的方程f2(x)-2af(x)+a-1=0(a∈R)有3個相異的實數(shù)根,則a的取值范圍是( 。
A.($\frac{{e}^{2}-1}{2e-1}$,+∞)B.(-∞,$\frac{{e}^{2}-1}{2e-1}$)C.(0,$\frac{{e}^{2}-1}{2e-1}$)D.{$\frac{{e}^{2}-1}{2e-1}$}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.參數(shù)方程$\left\{{\begin{array}{l}{x=4t+1}\\{y=-2t-5}\end{array}}\right.$(t為參數(shù))化為普通方程為x+2y+9=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x)=ex-e2x,則f(x)的最小值為-e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3+x2-3x-a在[-1,2]上有零點,則實數(shù)a的取值范圍是-$\frac{5}{3}$≤a≤$\frac{11}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{{2}^{x}-1}$+a是奇函數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)用單調(diào)性的定義證明:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(3)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=loga$\frac{1-x}{x+1}$(a>0,a≠1).
(I)求函數(shù)的定義域;
(Ⅱ)判斷函數(shù)的奇偶性,并說明理由;
(Ⅲ)解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=x3-6ax2,其中a≥0.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習冊答案