14.若函數(shù)f(x)=$\frac{lnx}{x}$,e<a<b,則f(a),f(b)的大小關(guān)系為f(a)>f(b).

分析 求導(dǎo)數(shù),確定x>e時(shí),f′(x)<0,函數(shù)單調(diào)遞減,即可進(jìn)行大小比較.

解答 解:∵f(x)=$\frac{lnx}{x}$,
∴f′(x)=$\frac{1-lnx}{{x}^{2}}$,
∴x>e時(shí),f′(x)<0,函數(shù)單調(diào)遞減,
∵e<a<b,f(a)>f(b).
故答案為:f(a)>f(b).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,正確求導(dǎo)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=$\frac{1}{3}$x3+x2+ax在x∈R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)的圖象如圖所示,則導(dǎo)函數(shù)y=f′(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)f(x)是定義在R上的偶函數(shù),對(duì)x∈R都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有5個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( 。
A.(1,2)B.(2,$\root{3}{12}$)C.(1,$\root{3}{4}$)D.(2,$\root{3}{10}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關(guān)于x的方程f2(x)-2af(x)+a-1=0(a∈R)有3個(gè)相異的實(shí)數(shù)根,則a的取值范圍是( 。
A.($\frac{{e}^{2}-1}{2e-1}$,+∞)B.(-∞,$\frac{{e}^{2}-1}{2e-1}$)C.(0,$\frac{{e}^{2}-1}{2e-1}$)D.{$\frac{{e}^{2}-1}{2e-1}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.兩圓相交于點(diǎn)A,B,P是BA延長(zhǎng)線上一點(diǎn),PCD,PEF分別是兩圓的割線,求證:C,D,E,F(xiàn)四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.參數(shù)方程$\left\{{\begin{array}{l}{x=4t+1}\\{y=-2t-5}\end{array}}\right.$(t為參數(shù))化為普通方程為x+2y+9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3+x2-3x-a在[-1,2]上有零點(diǎn),則實(shí)數(shù)a的取值范圍是-$\frac{5}{3}$≤a≤$\frac{11}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=x2-ax+lnx,若存在唯一一個(gè)整數(shù)x0使f(x0)<0成立,則a最大值為( 。
A.ln2B.2C.2+$\frac{1}{2}$ln2D.2+ln2

查看答案和解析>>

同步練習(xí)冊(cè)答案