已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,它的一個焦點(diǎn)在拋物線y2=24x的準(zhǔn)線上.
(1)求雙曲線的離心率;
(2)求雙曲線的方程.
考點(diǎn):雙曲線的簡單性質(zhì),雙曲線的標(biāo)準(zhǔn)方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出拋物線的準(zhǔn)線方程,可得c=6,再由漸近線方程,可得
b
a
=
3
,再由a,b,c的關(guān)系,解得a,b,進(jìn)而得到離心率和雙曲線的方程.
解答: 解:由于雙曲線的一個焦點(diǎn)在拋物線y2=24x的準(zhǔn)線l:x=-6上,
則c=6,
又雙曲線的漸近線方程為y=±
b
a
x,
由于一條漸近線方程是y=
3
x,
b
a
=
3

又c2=a2+b2=36,
解得,a=3,b=3
3

則(1)雙曲線的離心率e=
c
a
=2;
(2)雙曲線的方程為
x2
9
-
y2
27
=1.
點(diǎn)評:本題考查拋物線和雙曲線的方程和性質(zhì):漸近線,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,與函數(shù)y=
1
x
+
1
1-x
有相同定義域的是(  )
A、f(x)=lnx+1g(1-x)
B、f(x)=
x
+
1-x
C、f(x)=
1
x(x-1)
D、f(x)=ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為偶凼數(shù),且對任意x∈R滿足f(1+x)=f(1-x),若當(dāng)x∈[0,1]時,f(x)=x2,求x∈[2015,2016]時f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}前n項和為Sn,a1=1,an=
Sn
n
+n-1.
(1)求證{an}為等差數(shù)列,并求其通項公式;
(2)若存在二次函數(shù)f(x)=ax2(a≠0)使數(shù)列{
f(n)
anan+1
}的前n項和Tn=
2n2+2n
2n+1
,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax+
a-2
x
+2-2a(a>0),若f(x)≥2lnx在[1,+∞)上恒成立,則a的取值范圍是(  )
A、(1,+∞)
B、[1,+∞)
C、(2,+∞)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某隧道設(shè)計為雙向四車道,車道總寬20m,要求通過車輛限高5m,隧道全長2.5km,隧道兩側(cè)是與底面垂直的墻,高度為3m,隧道上部拱線近似地看成半個橢圓.
(1)若最大拱高h(yuǎn)為6m,則隧道設(shè)計的拱寬l是多少?
(2)若要使隧道上方半橢圓部分的土方工程量最小,則應(yīng)如何設(shè)計拱高h(yuǎn)和拱寬l?(橢圓
x2
a2
+
y2
b2
=1的面積公式為S=πab,隧道土方工程量=橫截面積×隧道長)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a,b,c成等差數(shù)列,點(diǎn)P(-3,0)在動直線ax+by+c=0(a,b不同時為零)上的射影點(diǎn)為M,若點(diǎn)N的坐標(biāo)為(2,3),則線段MN長度的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某移動公司對[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次是否愿意使用4G網(wǎng)絡(luò)的社會  調(diào)查,若愿意使用的稱為“4G族”,否則稱為“非4G族”,得如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組數(shù)分組頻數(shù)4G族在本組所占比例
第一組[25,30)2000.6
第二組[30,35)3000.65
第三組[35,40)2000.5
第四組[40,45)1500.4
第五組[45,50)a0.3
第六組[50,55]500.3
(I)補(bǔ)全頻率分布直方圖并求n、a的值;
(Ⅱ)從年齡段在[40,50)的“4G族”中采用分層抽樣法抽取6人參加4G網(wǎng)絡(luò)體驗活動,求年齡段分別在[40,45)、[45,50)中抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

推導(dǎo)等差數(shù)列求和公式的方法叫做倒序求和法,利用此法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=
 

查看答案和解析>>

同步練習(xí)冊答案