4.在等差數(shù)列{an}中,a4=5,a7=11,設bn=(-1)nan,則數(shù)列{bn}的前101項之和S101=-99.

分析 設等差數(shù)列{an}的公差為d,由a4=5,a7=11,可得$\left\{\begin{array}{l}{{a}_{1}+3d=5}\\{{a}_{1}+6d=11}\end{array}\right.$,解得a1,d.可得an.可得b2n-1+b2n=-a2n-1+a2n.即可得出數(shù)列{bn}的前101項之和S101

解答 解:設等差數(shù)列{an}的公差為d,∵a4=5,a7=11,∴$\left\{\begin{array}{l}{{a}_{1}+3d=5}\\{{a}_{1}+6d=11}\end{array}\right.$,解得a1=-1,d=2.
∴an=-1+2(n-1)=2n-3.
∴b2n-1+b2n=-a2n-1+a2n=2.
則數(shù)列{bn}的前101項之和S101=2×50-a101=100-(2×100-1)=-99.
故答案為:-99.

點評 本題考查了等差數(shù)列的通項公式與求和關系、分組求和,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.△ABC中,角A,B,C的對邊分別為a,b,c,A=$\frac{3π}{4}$,sinB=$\frac{\sqrt{10}}{10}$,D為BC邊中點,AD=1.
(Ⅰ)求$\frac{c}$的值;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知拋物線C:y2=8x的焦點為F,準線l與x軸的交點為M,點P在拋物線上,且|PM|=$\sqrt{2}$|PF|,則△PMF的面積為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設f(x)的圖象在區(qū)間[a,b]上不間斷,且f(a)f(b)<0,用二分法求相應方程的根時,若f(a)<0,f(b)>0,f($\frac{a+b}{2}$)>0,則取有根的區(qū)間為$(a,\frac{a+b}{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},集合M真子集的個數(shù)為( 。
A.32B.31C.16D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知a∈R,函數(shù)f(x)=2x3-3(a+1)x2+6ax.
(I)若函數(shù)f(x)在x=3處取得極值,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)若a>$\frac{1}{2}$,函數(shù)y=f(x)在[0,2a]上的最小值是-a2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(0,-2),且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則m等于( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知a>0,b>0,若$\sqrt{3}$是3a與3b的等比中項,則ab的最大值為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某人為增加家庭收入,年初用49萬元購買了一輛貨車用于長途運輸,第一年各種費用支出為6萬元,以后每年都增加2萬元,而每年的運輸收益為25萬元;
(1)求車主前n年的利潤f(n)關于年數(shù)n的函數(shù)關系式,并判斷他第幾年開始獲利超過15萬元;(注:利潤=總收入-總成本)
(2)若干年后,車主準備處理這輛貨車,有兩種方案:
方案一:利潤f(n)最多時,以4萬元出售這輛車;
方案二:年平均利潤最大時,以13萬元出售這輛車;
請你利用所學知識幫他做出決策.

查看答案和解析>>

同步練習冊答案