【題目】將圓為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,得到曲線

(1)求出的普通方程;

(2)設(shè)直線 的交點(diǎn)為 ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

【答案】(1)(2)

【解析】試題分析:(1)本問(wèn)首先應(yīng)用伸縮變換公式,根據(jù)公式可以得到變化后的參數(shù)方程為為參數(shù)),即,于是可以根據(jù)畫(huà)為普通方程;(2)將曲線的普通方程與直線的方程聯(lián)立,可以解方程組,方程組的解分別為兩點(diǎn)坐標(biāo),于是可以求出直線的斜率及中點(diǎn)坐標(biāo),根據(jù)垂直關(guān)系可以求出線段的垂直平分線的方程,然后根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式,即得到直線的極坐標(biāo)方程.

試題解析:(1)設(shè)為圓上的任意一點(diǎn),在已知的變換下變?yōu)?/span>上的點(diǎn),

則有

(2) 解得:

所以則線段的中點(diǎn)坐標(biāo)為,所求直線的斜率,于是所求直線方程為.

化為極坐標(biāo)方程得: ,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和記為Sn , a1=1,an+1=2Sn+1(n≥1).
(1)求{an}的通項(xiàng)公式;
(2)等差數(shù)列{bn}的各項(xiàng)為正,其前n項(xiàng)和為Tn , 且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解小學(xué)生的體能情況,抽取了某小學(xué)同年級(jí)部分學(xué)生進(jìn)行跳繩測(cè)試,將所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖(如圖所示),已知圖中從左到右前三個(gè)小組的頻率分別時(shí)0.1,0.3,0.4,第一小組的頻數(shù)為5.

(1)求第四小組的頻率?

(2)問(wèn)參加這次測(cè)試的學(xué)生人數(shù)是多少?

(3)問(wèn)在這次測(cè)試中,學(xué)生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,當(dāng)k為何值時(shí),
(1) 垂直?
(2) 平行?平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , , 的中點(diǎn).

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程.

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)寫(xiě)出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過(guò)點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)數(shù),使得函數(shù)對(duì)定義域內(nèi)的任意均滿足,且存在使得,存在使得,則稱直線為函數(shù)分界線.在下列說(shuō)法中正確的是__________(寫(xiě)出所有正確命題的編號(hào)).

①任意兩個(gè)一次函數(shù)最多存在一條分界線”;

分界線存在的兩個(gè)函數(shù)的圖象最多只有兩個(gè)交點(diǎn);

分界線;

分界線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng), 取一切非負(fù)實(shí)數(shù)時(shí),若,求的范圍;

(2)若函數(shù)存在極大值,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案