20.已知|$\overrightarrow{a}$|=a,|$\overrightarrow$|=b,$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{{a}^{2}+^{2}-2abcosθ}$.

分析 利用余弦定理解出.

解答 解:由余弦定理得|$\overrightarrow{a}-\overrightarrow$|=$\sqrt{{a}^{2}+^{2}-2abcosθ}$.
故答案為:$\sqrt{{a}^{2}+^{2}-2abcosθ}$.

點(diǎn)評 本題考查了平面向量加法運(yùn)算的幾何意義,余弦定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點(diǎn)(-1,2)和($\frac{\sqrt{3}}{3}$,0)在直線l:ax-y+1=0(a≠0)的同側(cè),則直線l傾斜角的取值范圍是( 。
A.($\frac{π}{4}$,$\frac{π}{3}$)B.(0,$\frac{π}{3}$)∪($\frac{3π}{4}$,π)C.($\frac{3π}{4}$,$\frac{5π}{6}$)D.($\frac{2π}{3}$,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若樣本的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)的中位數(shù)等于( 。
A.30B.40C.36.5D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知公共汽車每7min一班,在車站停留1min,開走后再過7min第二輛車到站,則乘客到達(dá)車站立即可以上車的概率為( 。
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{1}{8}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.判斷下列函數(shù)的奇偶性:
①y=$\sqrt{cosx-1}$
②y=$\sqrt{\frac{1-x}{1+x}}$
③y=lg(x+$\sqrt{1+{x}^{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=x3-3x-1,g(x)=2x-a,若對任意x1∈[0,2],存在x2∈[0,2]使|f(x1)-g(x2)|≤2,則實(shí)數(shù)a的取值范圍( 。
A.[1,5]B.[2,5]C.[-2,2]D.[5,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)變量x、y滿足約束條件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}}\right.$,則z=32x-y的最大值為( 。
A.$\root{3}{3}$B.$\sqrt{3}$C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p1:函數(shù)y=ex-e-x在R上為增函數(shù);命題p2:函數(shù)y=ex+e-x在R上為減函數(shù),則在命題q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2,q4:p1∧(¬p2)中,真命題是( 。
A.q1、q3B.q2、q3C.q1、q4D.q2、q4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a=$\int_1^4{\frac{2}{{\sqrt{x}}}}$dx,求$(1-x){({\frac{a}{2}+x})^5}$的展開式中含x2項(xiàng)的系數(shù).

查看答案和解析>>

同步練習(xí)冊答案