【題目】某學(xué)校高二年級的第二學(xué)期,因某學(xué)科的任課教師王老師調(diào)動工作,于是更換了另一名教師趙老師繼任.第二學(xué)期結(jié)束后從全學(xué)年的該門課的學(xué)生考試成績中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:

學(xué)校秉持均衡發(fā)展、素質(zhì)教育的辦學(xué)理念,對教師的教學(xué)成績實行績效考核,績效考核方案規(guī)定:每個學(xué)期的學(xué)生成績中與其中位數(shù)相差在范圍內(nèi)(含)的為合格,此時相應(yīng)的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時相應(yīng)的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時相應(yīng)的給教師賦分為-1分.

(Ⅰ)問王老師和趙老師的教學(xué)績效考核成績的期望值哪個大?

(Ⅱ)是否有的把握認(rèn)為“學(xué)生成績?nèi)〉脙?yōu)秀與更換老師有關(guān)”.

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(Ⅰ)王老師;(Ⅱ)沒有.

【解析】

(Ⅰ)分別計算王老師和趙老師的教學(xué)績效考核成績的期望值,比較即可;

(Ⅱ)可以根據(jù)列聯(lián)表中的數(shù)據(jù),代入公式,計算出k值,然后代入離散系數(shù)表,比較即可得到答案.

(Ⅰ)第一學(xué)期的數(shù)據(jù)為:

43,44,49,52,53,56,57,59,62,64,65,65,65,68,72,73,75,76,78,83,84,87,88,93,95,

其“中位數(shù)”為65,優(yōu)秀有8個,合格有12個,不合格有5個.

∴王老師的教學(xué)績效考核成績的分布列為:

-1

1

2

;

第二學(xué)期的數(shù)據(jù)為:

44,49,52,54,54,58,59,60,61,62,63,63,65,66,67,70,71,72,72,73,77,81,88,88,94,

其“中位數(shù)”為65,優(yōu)秀有5個,合格有15個,不合格有5個,

∴趙老師的教學(xué)績效考核成績的分布列為:

-1

1

2

,

,所以,王老師的教學(xué)績效考核成績的期望值較大;

(Ⅱ)由題意得:

第一學(xué)期

第二學(xué)期

合計

優(yōu)秀

8

5

13

非優(yōu)秀

17

20

37

合計

25

25

50

,∴沒有的把握認(rèn)為“學(xué)生成績優(yōu)秀與更換老師有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)站針對“2014年法定節(jié)假日調(diào)休安排展開的問卷調(diào)查,提出了AB、C三種放假方案,調(diào)查結(jié)果如下:


支持A方案

支持B方案

支持C方案

35歲以下

200

400

800

35歲以上(含35歲)

100

100

400

1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從支持A方案的人中抽取了6人,求n的值;

2)在支持B方案的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A是橢圓的上頂點,斜率為的直線交橢圓EAM兩點,點N在橢圓E上,且.

1)當(dāng)時,求的面積;

2)當(dāng)時,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機選取30名學(xué)生進行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學(xué)

生物

歷史

地理

政治

男生

選考方案確定的有6人

6

6

3

1

2

0

選考方案待確定的有8人

5

4

0

1

2

1

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

0

0

1

1

(Ⅰ)試估計該學(xué)校高一年級確定選考生物的學(xué)生有多少人?

(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學(xué)和地理”的人數(shù).(直接寫出結(jié)果)

(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從該設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:

直徑/

78

79

81

82

83

84

85

86

87

88

89

90

91

93

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值.

(1)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應(yīng)事件的頻率):

;②;③,評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁.試判斷設(shè)備的性能等級.

(2)將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“次品”,將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“突變品”,從樣本的“次品”中隨意抽取2件零件,求“突變品”個數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,平面,.,.M的中點,P的中點,點Q在線段上,且.

1)證明:

2)若二面角的大小為60°,求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左,右焦應(yīng)分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為1.

1)求橢圓的方程;

2)已知直線與橢圓切于點,直線平行于,與橢圓交于不同的兩點、,且與直線交于點.證明:存在常數(shù),使得,并求的值;

3)點是橢圓上除長軸端點外的任一點,連接,,設(shè)后的角平分線的長軸于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若曲線在點處有相同的切線,求函數(shù)的極值;

2)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,,且的最小值為,的圖像的相鄰兩條對稱軸之間的距離為.

1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;

2)在中,角,,所對的邊分別為,,.,求.

查看答案和解析>>

同步練習(xí)冊答案