【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)證明當(dāng)時(shí),關(guān)于的不等式恒成立;

(Ⅲ)若正實(shí)數(shù)滿足,證明.

【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析

【解析】試題分析:(1)求導(dǎo)函數(shù),從而可確定函數(shù)的單調(diào)性;(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)研究其最值,將恒成立問題進(jìn)行轉(zhuǎn)化;(3)將代數(shù)式放縮,構(gòu)造關(guān)于的一元二次不等式,解不等式即可.

試題解析:(Ⅰ) ,

,得

,所以.

所以的單調(diào)減區(qū)間為,函數(shù)的增區(qū)間是.

(Ⅱ)令 ,

所以 .

因?yàn)?/span>

所以.

,得.

所以當(dāng),;

當(dāng)時(shí),.

因此函數(shù)是增函數(shù),在是減函數(shù).

故函數(shù)的最大值為

.

,因?yàn)?/span>,

又因?yàn)?/span>是減函數(shù).

所以當(dāng)時(shí),,

即對(duì)于任意正數(shù)總有.

所以關(guān)于的不等式恒成立.

(Ⅲ)由

,

從而 .

,則由得,.

可知,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

所以,

所以

,

因此成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),又是一個(gè)常數(shù),已知時(shí), 只有一個(gè)實(shí)根,當(dāng)時(shí), 有三個(gè)相異實(shí)根,給出下列命題:

有一個(gè)相同的實(shí)根;

有一個(gè)相同的實(shí)根;

的任一實(shí)根大于的任一實(shí)根;

的任一實(shí)根小于的任一實(shí)根.

其中正確命題的個(gè)數(shù)為( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+bx2+cx的導(dǎo)函數(shù)圖象關(guān)于直線x=2對(duì)稱
(1)求b值;
(2)若f(x)在x=t處取得極小值,記此極小值為g(t),求g(t)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:
(1)求a2 , a3;
(2)猜想{an}通項(xiàng)公式并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求的取值范圍.

(2)設(shè)的兩個(gè)極值點(diǎn)為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax+ ﹣1. (Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;
(Ⅱ)當(dāng)a= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù)g(x)=x2﹣2bx﹣ ,若對(duì)于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中 為自然對(duì)數(shù)的底數(shù), …).

(1)若函數(shù)僅有一個(gè)極值點(diǎn),求的取值范圍;

(2)證明:當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn), ,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax2+(2﹣a)x. (Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)a>0,證明:當(dāng)0<x< 時(shí),f( +x)>f( ﹣x);
(Ⅲ)若函數(shù)y=f(x)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0 , 證明:f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)(1,1)且與曲線y=x3相切的切線方程為(
A.y=3x﹣2
B.y= x+
C.y=3x﹣2或y= x+
D.y=3x﹣2或y= x﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案