【題目】過點(1,1)且與曲線y=x3相切的切線方程為(
A.y=3x﹣2
B.y= x+
C.y=3x﹣2或y= x+
D.y=3x﹣2或y= x﹣

【答案】C
【解析】解:(1)設切點為(x0 , y0),由題意得y=3x2 , y0=x03 , 則切線的斜率k=3x02 ,
∴切線方程是:y﹣x03=3x02(x﹣x0),①
∵切線過點(1,1),∴1﹣x03=3x02(1﹣x0),
化簡得,2x03﹣3x02+1=0,
2(x03﹣1)﹣3(x02﹣1)=0,
則(x0﹣1)(2x02﹣x0﹣1)=0,
解得x0=1或x0=﹣ ,代入①得:3x﹣y﹣2=0或3x﹣4y+1=0,
∴切線方程為3x﹣y﹣2=0或3x﹣4y+1=0.
故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)證明當時,關于的不等式恒成立;

(Ⅲ)若正實數(shù)滿足,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應相同的是(
A.眾數(shù)
B.平均數(shù)
C.中位數(shù)
D.標準差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面幾種推理中是演繹推理的序號為(
A.由金、銀、銅、鐵可導電,猜想:金屬都可導電
B.猜想數(shù)列 {an}的通項公式為 (n∈N+
C.半徑為r圓的面積S=πr2 , 則單位圓的面積S=π
D.由平面直角坐標系中圓的方程為(x﹣a)2+(y﹣b)2=r2 , 推測空間直角坐標系中球的方程為(x﹣a)2+(y﹣b)2+(z﹣c)2=r2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a,b,c∈(﹣∞,0),則a+ ,b+ ,c+
A.都不大于﹣2
B.都不小于﹣2
C.至少有一個不大于﹣2
D.至少有一個不小于﹣2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線與拋物線y24x相交于不同的A,B兩點,O為坐標原點

(1) 如果直線過拋物線的焦點且斜率為1,求的值;

2)如果,證明:直線必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)植被被破壞,土地沙化越來越嚴重,最近三年測得沙漠增加值分別為0.2萬公頃、0.4萬公頃、0.76萬公頃,則沙漠增加數(shù)y(萬公頃)關于年數(shù)x的函數(shù)關系較為近似的是(
A.y=0.2x
B.
C.
D.y=0.2+log16x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),在以為極點, 軸的正半軸為極軸的極坐標系中,射線,與, 各有一個交點,當時,這兩個交點間的距離為2,當,這兩個交點重合.

1)分別說明是什么曲線,并求出的值;

2)設當時, , 的交點分別為,當, , 的交點分別為,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)當k=1時,求函數(shù)f(x)的單調區(qū)間;
(2)當 時,求函數(shù)f(x)在[0,k]上的最大值M.

查看答案和解析>>

同步練習冊答案