【題目】自2018年10月1日起,中華人民共和國(guó)個(gè)人所得稅新規(guī)定,公民月工資、薪金所得不超過(guò)5000元的部分不必納稅,超過(guò)5000元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
全月應(yīng)納稅所得額 | 稅率 |
不超過(guò)1500元的部分 | 3 |
超過(guò)1500元不超過(guò)4500元的部分 | 10 |
超過(guò)4500元不超過(guò)9000元的部分 | 20 |
超過(guò)9000元不超過(guò)35000元 | 25 |
如果小李10月份全月的工資、薪金為7000元,那么他應(yīng)該納稅多少元?
如果小張10月份交納稅金425元,那么他10月份的工資、薪金是多少元?
寫(xiě)出工資、薪金收入元月與應(yīng)繳納稅金元的函數(shù)關(guān)系式.
【答案】(1);(2)元;(3)
【解析】
由分段累進(jìn)思想,先算第一部分,再算第二部分,即可得到所求值;
考慮第一段1500元的稅,再考慮3000元的稅,進(jìn)而算出第三部分的應(yīng)交的,即可得到所求值;
分別考慮交稅的前三部分,運(yùn)用分段累進(jìn)思想即可得到所求解析式.
解:元,
應(yīng)交稅為元;
小張10月份交納稅金425元,
由分段累進(jìn)可得;;
,,
則他10月份的工資、薪金是元;
時(shí),可得
,
即為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下面四個(gè)命題:
①“若,則或”的逆否命題為“若且,則”
②“”是“”的充分不必要條件
③命題“若,則”的逆否命題為真命題
④若為假命題,則、均為假命題,其中真命題個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,φ<0)的圖象與y軸的交點(diǎn)為(0,1),它的一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2),(x0,﹣2),
(1)若函數(shù)f(x)的最小正周期為π,求函數(shù)f(x)的解析式;
(2)當(dāng)x∈(x0,x0)時(shí),f(x)圖象上有且僅有一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn),且關(guān)于x的方程f(x)﹣a=0在區(qū)間[,]上有且僅有一解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
如圖1 如圖2
(1)證明:平面平面;
(2)若平面平面,求直線(xiàn)與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)?/span> ( )
(1)我離開(kāi)家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);
(2)我出發(fā)后,心情輕松,緩緩行進(jìn),后來(lái)為了趕時(shí)間開(kāi)始加速;
(3)我騎著車(chē)一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間.
A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是( )
A. 命題的否定是:
B. 命題中,若,則的否命題是真命題
C. 如果為真命題,為假命題,則為真命題,為假命題
D. 是函數(shù)的最小正周期為的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點(diǎn)E,F,G,H.
(1)求四面體ABCD的體積;
(2)證明:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題14分)
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分別為AD,PB的中點(diǎn).
(Ⅰ)求證:PE⊥BC;
(Ⅱ)求證:平面PAB⊥平面PCD;
(Ⅲ)求證:EF∥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項(xiàng)和,則稱(chēng)是“回歸數(shù)列”.
()①前項(xiàng)和為的數(shù)列是否是“回歸數(shù)列”?并請(qǐng)說(shuō)明理由.②通項(xiàng)公式為的數(shù)列是否是“回歸數(shù)列”?并請(qǐng)說(shuō)明理由;
()設(shè)是等差數(shù)列,首項(xiàng),公差,若是“回歸數(shù)列”,求的值.
()是否對(duì)任意的等差數(shù)列,總存在兩個(gè)“回歸數(shù)列”和,使得成立,請(qǐng)給出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com