在等差數(shù)列{an}中,公差d=
1
2
,且a1+a4+a7+…+a58=60,則ak+a61-k(k∈N+,k≤60)的值為
 
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列{an}中,公差d=
1
2
,且a1+a4+a7+…+a58=60,求出a1=-
45
4
,ak+a61-k=a1+a60=2a1+59d,即可得出結(jié)論.
解答: 解:∵等差數(shù)列{an}中,公差d=
1
2
,且a1+a4+a7+…+a58=60,
∴20a1+
20×19
2
×
1
2
×3=60,
∴a1=-
45
4
,
∴ak+a61-k=a1+a60=2a1+59d=-
45
2
+
59
2
=7,
故答案為:7.
點評:本題考查等差數(shù)列的性質(zhì),考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn=4-an-
1
2 n-2
(n∈N*) 則通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:2x+y+3=0與圓C:x2+(y-1)2=5的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①f(0)=-1;②對任x∈R,均有f(x-4)=f(2-x);③函數(shù)f(x)的圖象與函數(shù)g(x)=x-1的圖象相切.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)且僅當(dāng)x∈[4,m](m>4)時,f(x-t)≤g(x)恒成立,試求t,m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-x+alnx,其中a≠0.
(1)若a=-6,求f(x)在[1,4]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若1,a1,a2,4成等差數(shù)列;1,b1,b2,b3,4成等比數(shù)列,則
a1-a2
b2
的值等于( 。
A、-
1
2
B、
1
2
C、±
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的單調(diào)區(qū)間.
(1)函數(shù)f(x)=x+
a
x
(a>0)(x>0);
(2)函數(shù)y=
x2+x-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l1:(2a+3)x+(a-1)y+3=0與l2:(a+2)x+(1-a)y-3=0平行,則實數(shù)a的值為( 。
A、l
B、-
5
3
C、1或-
5
3
D、1或-l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M={x|-3≤x≤5},N={x|a≤x≤a+1},若N⊆M,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案