科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐PABCD中,M、N分別是側棱PA和底面BC邊的中點,O是底面平行四邊形ABCD的對角線AC的中點.求證:過O、M、N三點的平面與側面PCD平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延長線上一點,F(xiàn)P=t.過A、B、P三點的平面交FD于M,交FE于N.
(1)求證:MN∥平面CDE;
(2)當平面PAB⊥平面CDE時,求t的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在錐體PABCD中,ABCD是邊長為1的菱形,且∠DAB=60°,PA=PD=,PB=2,E、F分別是BC、PC的中點.證明:AD⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四面體ABCD中作截面PQR,若PQ、CB的延長線交于M,RQ、DB的延長線交于N,RP、DC的延長線交于K.
求證:M、N、K三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.
求證:(1)平面EFG∥平面ABC;(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點B到平面MAC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com