某人午休醒來,發(fā)覺表停了,他打開收音機想收聽電臺整點報時,則他等待的時間短于5分鐘的概率為( 。
A、
1
12
B、
1
6
C、
2
5
D、
1
4
考點:幾何概型
專題:概率與統(tǒng)計
分析:由于電臺的整點報時之間的間隔60分,等待的時間不多于5分鐘,根據(jù)幾何概率的計算公式可求.
解答: 解:設電臺的整點報時之間某刻的時間x,
由題意可得,0≤x≤60
等待的時間不多于5分鐘的概率為P=
5
60
=
1
12
;
故選A.
點評:本題主要考查了幾何概率中與區(qū)間長度有關的概率的求解,幾何概率常見的度量有區(qū)域的①長度,②面積,③體積.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖是某建筑設計院為海南國際展覽館的主展廳的屋面和水平主梁位于中軸線一側(cè)的垂直截面的設計圖,設計師以屋面曲線C和水平主梁L的交噗O為原點,水平主梁所在直線為x軸建立直角坐標系xOy,設計要求如下:屋面曲線C方程為y=
x
(x≥0),水平主梁對屋面曲線的支撐構(gòu)成正三角形(稱為支梁三角形):△OP1Q1,△Q1P2Q2,△Q2P3Q3,…,△Qn-1PnQn(n∈N*),其中P1,P2,P3,…Pn在屋面曲線C上,O,Q1,Q2,Q3,…,Qn在水平主梁上,記△OP1Q1的邊長為a1(米),△Qk-1PkQk的邊長為ak(米)(k=1,2,…,n,Q0為坐標原點O),請你解答如下問題:
(Ⅰ)求a1,a2的值,并推導ak關于k的表達式;
(Ⅱ)記△Qk-1PkQk的面積為bk,Tn=b1+b2+…bn,△OPnQn的面積為tn,定義δ n=
Tn
tn
為防震系數(shù),若要求防震系數(shù)為0.7,問共需要設計多少個支梁三角形?(參考公式12+22+…n2=
n(n+1)(2n+1)
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4sinxcos(x+
π
3
)+
3

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[-
π
4
,
π
6
]
上的最大值和最小值及取得最值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
2
3
,α∈(
π
2
,π),cosβ=-
3
4
,β∈(π,
2
),求sin(α-β),cos(α+β),tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(
π
4
+θ)=
3
5
,且
π
4
+θ∈(-
π
2
,0),求
sin2θ+2sin2θ
1-tanθ
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=(3,4),
OB
=(6,-3),
OC
=(5-x,-3-y)(其中O為坐標原點).
(1)若A,B,C三點共線,求y關于x的表達式;
(2)若△ABC是以∠B為直角的等腰三角形,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,正三棱柱ABC-A1B1C1中,各棱長均為4,M、N分別是BC、CC1的中點.
(1)證明:MN⊥平面AMB;
(2)求三棱錐B1-ABC的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-2x+1
2x+1+a
(a∈R,a>0).
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)當a=2時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),則a的取值范圍為( 。
A、[2-
2
,2+
2
]
B、(-∞,ln2]
C、(2-
2
,2+
2
D、(ln2,+∞)

查看答案和解析>>

同步練習冊答案