6.已知函數(shù)f(x)=x2,
(1)它是奇函數(shù)還是偶函數(shù)?
(2)它在(0,+∞)上是增函數(shù)還是減函數(shù)?

分析 (1)求出函數(shù)的定義域?yàn)镽,計(jì)算f(-x),與f(x)比較,由奇偶性的定義即可得到結(jié)論;
(2)f(x)在(0,+∞)上是增函數(shù).運(yùn)用單調(diào)性的定義,注意作差、變形和定符號(hào)、下結(jié)論幾個(gè)步驟.

解答 解:(1)f(x)的定義域?yàn)镽,
f(-x)=(-x)2=x2=f(x),
所以函數(shù)f(x)=x2為偶函數(shù).
(2)f(x)在(0,+∞)上是增函數(shù).
理由如下:設(shè)x1,x2∈(0,+∞),且x1<x2,
f(x1)-f(x2)=x12-x22=(x1+x2)(x1-x2),
由x1,x2∈(0,+∞),且x1<x2,
可得x1+x2>0,x1-x2<0,
即有f(x1)-f(x2)<0,即f(x1)<f(x2).
所以函數(shù)f(x)=x2在(0,+∞)上是增函數(shù).

點(diǎn)評(píng) 本題考查二次函數(shù)的奇偶性和單調(diào)性的判斷,注意運(yùn)用定義法解題,考查化簡整理的運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.“莞馬”活動(dòng)中的α機(jī)器人一度成為新聞熱點(diǎn),為檢測(cè)其質(zhì)量,從一生產(chǎn)流水線上抽取20件該產(chǎn)品,其中合格產(chǎn)品有15件,不合格的產(chǎn)品有5件.
(1)現(xiàn)從這20件產(chǎn)品中任意抽取2件,記不合格的產(chǎn)品數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(2)用頻率估計(jì)概率,現(xiàn)從流水線中任意抽取三個(gè)機(jī)器人,記ξ為合格機(jī)器人與不合格機(jī)器人的件數(shù)差的絕對(duì)值,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.有3位老師和3 個(gè)學(xué)生站成一排照相,則任何兩個(gè)學(xué)生都互不相鄰的排法總數(shù)為(  )
A.36B.72C.144D.288

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知在實(shí)數(shù)集R上的可導(dǎo)函數(shù)f(x),滿足f(x+2)是奇函數(shù),且$\frac{1}{f′(x)}$>2,則不等式f(x)>$\frac{1}{2}$x-1的解集是( 。
A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求(x2-$\frac{1}{2x}$)9展開式的:
(1)第6項(xiàng)的二項(xiàng)式系數(shù);
(2)第3項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示的程序框圖,輸出結(jié)果的值為( 。
A.-$\frac{1}{2}$B.0C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)z=2x+y,其中實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤3\end{array}\right.$,則z的最小值為( 。
A.-2B.-4C.-9D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=2x+x-2016的一個(gè)零點(diǎn)x0∈(n,n+1),則正整數(shù)n=( 。
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y滿足$\left\{\begin{array}{l}{x+3y-4≤0}\\{3x+y+4≥0}\\{x-y≤0}\end{array}\right.$,若z=$\frac{y}{x+3}$,則z的最大值和最小值為( 。
A.最大值是2,最小值是-$\frac{1}{2}$B.最大值是3,最小值是-$\frac{1}{2}$
C.最大值是2,最小值是-$\frac{1}{3}$D.最大值是3,最小值是-$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案