18.設(shè)z=2x+y,其中實數(shù)x,y滿足$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤3\end{array}\right.$,則z的最小值為( 。
A.-2B.-4C.-9D.-3

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標,代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤3\end{array}\right.$作出可行域如圖,

化目標函數(shù)z=2x+y為y=-2x+z,
由圖可知,當直線y=-2x+z過A時直線在y軸上的截距最小,z有最小值.
聯(lián)立$\left\{\begin{array}{l}{x+2y=0}\\{y=3}\end{array}\right.$,解得A(-6,3),
此時z=2×(-6)+3=-9.
故選:C.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.若cosθ=$\frac{1}{3}$,且270°<θ<360°,則cos$\frac{θ}{2}$等于( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.±$\frac{{\sqrt{6}}}{3}$D.-$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若不等式組$\left\{{\begin{array}{l}{x-y+2≥0}\\{x-5y+10≤0}\\{x+y-8≤0}\end{array}}\right.$,表示的平面區(qū)域為D,則將D繞原點旋轉(zhuǎn)一周所得區(qū)域的面積為( 。
A.30πB.28πC.26πD.25π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2,
(1)它是奇函數(shù)還是偶函數(shù)?
(2)它在(0,+∞)上是增函數(shù)還是減函數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知(2-x)6=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,則a3=( 。
A.15B.-15C.20D.-20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,三棱柱ABC一A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1中點,F(xiàn)在AB上,且CF⊥AB,AC=BC=1,AA1=3.
(I)求證:CF∥平面AEB1;
(Ⅱ)求平面ABC與平面AB1E所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.命題p:關(guān)于x的不等式x2+(a-1)x+a2<0的解集是空集,命題q:已知二次函數(shù)f(x)=x2-mx+2滿足$f(\frac{3}{2}+x)=f(\frac{3}{2}-x)$,且當x∈[0,a]時,最大值是2,若命題“p且q”為假,“p或q”為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,棱長為3的正方體的頂點A在平α上,三條棱AB、AC、AD都在平面α的同側(cè).若頂點B,C到平面α的距離分別為1,$\sqrt{2}$.建立如圖所示的空間直角坐標系,設(shè)平面α的一個法向量為(x0,y0,z0),若x0=1,則y0=$\sqrt{2}$,z0=$\sqrt{6}$,且頂點D到平面α的距離是$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,邊長為2的正方形ABCD中,BE=BF=$\frac{1}{4}$BC,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于A′點,則三棱錐A′-EFD的體積為( 。
A.$\frac{{\sqrt{21}}}{12}$B.$\frac{{\sqrt{17}}}{12}$C.$\frac{{\sqrt{21}}}{6}$D.$\frac{{\sqrt{17}}}{6}$

查看答案和解析>>

同步練習冊答案