【題目】為滿足人民對美好生活的向往,環(huán)保部門要求相關(guān)企業(yè)加強污水治理,排放未達標的企業(yè)要限期整改,設企業(yè)的污水排放量W與時間t的關(guān)系為,用的大小評價在這段時間內(nèi)企業(yè)污水治理能力的強弱,已知整改期內(nèi),甲、乙兩企業(yè)的污水排放量與時間的關(guān)系如下圖所示.


給出下列四個結(jié)論:

①在這段時間內(nèi),甲企業(yè)的污水治理能力比乙企業(yè)強;

②在時刻,甲企業(yè)的污水治理能力比乙企業(yè)強;

③在時刻,甲、乙兩企業(yè)的污水排放都已達標;

④甲企業(yè)在這三段時間中,在的污水治理能力最強.

其中所有正確結(jié)論的序號是____________________

【答案】①②③

【解析】

根據(jù)定義逐一判斷,即可得到結(jié)果

表示區(qū)間端點連線斜率的負數(shù),

這段時間內(nèi),甲的斜率比乙的小,所以甲的斜率的相反數(shù)比乙的大,因此甲企業(yè)的污水治理能力比乙企業(yè)強;①正確;

甲企業(yè)在這三段時間中,甲企業(yè)在這段時間內(nèi),甲的斜率最小,其相反數(shù)最大,即在的污水治理能力最強.④錯誤;

時刻,甲切線的斜率比乙的小,所以甲切線的斜率的相反數(shù)比乙的大,甲企業(yè)的污水治理能力比乙企業(yè)強;②正確;

時刻,甲、乙兩企業(yè)的污水排放量都在污水打標排放量以下,所以都已達標;③正確;

故答案為:①②③

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線E)與圓O相交于AB兩點,且.過劣弧上的動點作圓O的切線交拋物線EC,D兩點,分別以C,D為切點作拋物線E的切線,,相交于點M.

1)求拋物線E的方程;

2)求點M到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某學校高三年級的三個班在一學期內(nèi)的六次數(shù)學測試的平均成績y關(guān)于測試序號x的函數(shù)圖象,為了容易看出一個班級的成績變化,將離散的點用虛線連接,根據(jù)圖象,給出下列結(jié)論:

①一班成績始終高于年級平均水平,整體成績比較好;

②二班成績不夠穩(wěn)定,波動程度較大;

③三班成績雖然多次低于年級平均水平,但在穩(wěn)步提升.

其中錯誤的結(jié)論的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,六邊形的六個內(nèi)角均相等,M,N分別是線段,上的動點,且滿足,現(xiàn)將,折起,使得B,F重合于點G,則二面角的余弦值的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.

已知等比數(shù)列的公比,前n項和為,若_________,數(shù)列滿足,.

1)求數(shù)列的通項公式;

2)求數(shù)列的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為2,且過點.

1)求橢圓的方程;

2)已知是橢圓的內(nèi)接三角形,若坐標原點的重心,求點到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,,,,分別為的中點,

1)證明:平面.

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:過橢圓上的一點(不與長軸的端點重合)與橢圓的兩個焦點確定的三角形稱為橢圓的焦點三角形;已知過橢圓上一點P(不與長軸的端點重合)的焦點三角形,且

1)求證:焦點三角形的面積為定值;

2)已知橢圓的一個焦點三角形為,;

,求點的橫坐標的范圍;

,過點的直線軸交于點,且,記,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線,F1,F2是雙曲線的左右兩個焦點,P在雙曲線上且在第一象限,圓M是△F1PF2的內(nèi)切圓.M的橫坐標為_________,若F1到圓M上點的最大距離為,則△F1PF2的面積為___________.

查看答案和解析>>

同步練習冊答案