方程x2+(k-2)x+5-k=0的兩根都大于2,求實(shí)數(shù)k的取值范圍.
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)函數(shù)f(x)=x2+(k-2)x+5-k,根據(jù)方程和函數(shù)之間的關(guān)系即可得到結(jié)論.
解答: 解:設(shè)f(x)=x2+(k-2)x+5-k,
∵方程x2+(k-2)x+5-k=0的兩根都大于2,
△=(k-2)2-4(5-k)≥0
f(2)>0
-
k-2
2
>2
,即
k≥4或k≤-4
k>-5
k<-2
,
即-5<x≤-4,
故實(shí)數(shù)k的取值范圍-5<x≤-4.
點(diǎn)評:本題主要考查二次方程根的分別問題,根據(jù)方程和函數(shù)之間的關(guān)系,構(gòu)造函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an+1=3an+4(n∈N*
(1)求證:數(shù)列{an+2}是等比數(shù)列;
(2)設(shè)bn=nan(n∈N*),求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,記Sn是它的前n項(xiàng)和,若S2=16,S4=24,求數(shù)列{|an|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,C島位于我南海A港口北偏東60方向,距A港口60
2
海里處,我海監(jiān)船從A港口出發(fā),自西向東航行至B處時(shí),接上級命令趕赴C島執(zhí)行任務(wù),此時(shí)C島在B處北偏西45°方向上,海監(jiān)船立刻改變航向以每小時(shí)60海里的速度沿BC行進(jìn),則從B處到達(dá)C島需要多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)在空間中
(I)已知三點(diǎn)A(1,1,1)、B(2,2,2)、C(3,2,4),求△ABC的面積;
(Ⅱ)已知向量
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(7,5,λ),若向量
a
,
b
,
c
共面,求實(shí)數(shù)λ之值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐的體積為12,底面對角線的長為2
6
,則側(cè)面與底面所成的二面角等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+lnx,其中a為常數(shù),e為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)a=-1時(shí),求f(x)的最大值;
(Ⅱ)若在區(qū)間(0,e)上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=1時(shí),判斷方程|f(x)|=
lnx
x
+
1
2
是否有實(shí)根?若無實(shí)根請說明理由,若有實(shí)根請給出根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC是圓O的內(nèi)接三角形,PA是圓O的切線,PB交AC于點(diǎn)E,交圓O于點(diǎn)D,已知PE=PA,∠ABC=60°,PD=1,BD=8.
(1)求證:∠AEP=60°;
(2)求BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是拋物線x2=4y上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作圓x2+(y-4)2=1的兩條切線,切點(diǎn)分別為M,N,則線段MN長度的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案