7.已知數(shù)列{an}滿足an+1=$\sqrt{{a}_{n}^{2}-2{a}_{n}+2}$+1(n∈N*),則使不等式a2016>2016成立的所有正整數(shù)a1的集合為(  )
A.{a1|a1≥2016,a1∈N*}B.{a1|a1≥2015,a1∈N*}C.{a1|a1≥2014,a1∈N*}D.{a1|a1≥2013,a1∈N*}

分析 化簡(jiǎn)構(gòu)造可得{(an-1)2}是以(a1-1)2為首項(xiàng),以1為公差的等差數(shù)列,從而可得(an-1)2=(a1-1)2+n-1,從而代入求解即可.

解答 解:∵an+1=$\sqrt{{a}_{n}^{2}-2{a}_{n}+2}$+1,
∴an+1-1=$\sqrt{{a}_{n}^{2}-2{a}_{n}+2}$,
∴(an+1-1)2=(an-1)2+1,
∴{(an-1)2}是以(a1-1)2為首項(xiàng),以1為公差的等差數(shù)列,
∴(an-1)2=(a1-1)2+n-1,
∴(a2016-1)2=(a1-1)2+2015,
∴(a1-1)2=(a2016-1)2-2015>2015×2014,
又∵a1為正整數(shù),
∴a1-1>$\sqrt{2015×2014}$,
∴a1≥2016,
故選A.

點(diǎn)評(píng) 本題考查了數(shù)列的性質(zhì)的判斷及整體思想與轉(zhuǎn)化思想的應(yīng)用,同時(shí)考查了構(gòu)造法的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.2016年高考報(bào)名體檢中,某市共有40000名男生參加體檢,體檢其中一項(xiàng)為測(cè)量身高,統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示所有男生的身高服從正態(tài)分布N(170,16).統(tǒng)計(jì)人員從市一中高三的參加體檢的男生中隨機(jī)抽取了50名進(jìn)行身高測(cè)量,所得數(shù)據(jù)全部介于162cm和186cm之間,并將測(cè)量數(shù)據(jù)分成6組:第一組[162,166),第二組[166,170),…,第六組[182,186),然后按上述分組方式繪制得到如圖所示的頻率分布直方圖.
(1)試評(píng)估市一中高三年級(jí)參加體檢的男生在全市高三年級(jí)參加體驗(yàn)的男生中的平均身高狀況(同一組中的數(shù)據(jù)用該區(qū)間的中間值作代表);
(2)在這50名參加體檢的男生身高在178cm以上(含178cm)的人中任意抽取3人,將該3人中身高排名(從高到低)在全市參加體檢的高三男生身高前52名的人數(shù)記為X,求X的數(shù)學(xué)期望.
若X-N(μ,δ2),則P(μ-δ<X≤μ+δ)=0.6826,P(μ-2δ<X≤μ+2δ))=0.9544,P(μ-3δ<X≤μ+3δ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若f(x)是定義在(-1,1)上的減函數(shù),則下列不等式正確的是(  )
A.f(sinx)>f(cosx)B.f($\frac{{x}^{2}+1}{2}$)>f(x)
C.f($\frac{1}{{3}^{x}+1}$)≥f($\frac{1}{{2}^{x}+1}$)D.f($\frac{1}{{3}^{x}+{3}^{-x}}$)≥f($\frac{1}{{2}^{x}+{2}^{-x}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8,BC是⊙O的直徑,AB=AC=6,OE∥AD.
(1)證明:EF∥面BCD;
(2)證明:面ACD⊥面CEF;
(3)求三棱錐O1-OBF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}為等差數(shù)列,a4=9,d=-2,則S4=48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的短軸長(zhǎng)為2,離心率$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)T1,T2為橢圓上不同兩點(diǎn),過T1,T2作橢圓切線交于點(diǎn)P,若T1P⊥T2P,求點(diǎn)P的軌跡E的方程;
(Ⅲ)若PT1交E于Q1,PT2交E與Q2,求△PQ1Q2面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.等差數(shù)列的前n項(xiàng)和也構(gòu)成一個(gè)等差數(shù)列,即Sn,S2n-Sn,S3n-S2n,…為等差數(shù)列,公差為n2d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.△ABC中,若|$\overrightarrow{AB}$|2+|$\overrightarrow{AC}$|2=|$\overrightarrow{AB}$+$\overrightarrow{AC}$|2,則∠A=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知sinα=$\frac{4}{5}$,且α為銳角,則cos$\frac{α}{2}$=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案