計(jì)算:0.25-2+(
8
27
)-
1
3
-
1
2
lg16-2lg5+(
1
3
)0
考點(diǎn):有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:計(jì)算題
分析:運(yùn)用指數(shù)冪的運(yùn)算,對(duì)數(shù)的運(yùn)算化簡(jiǎn)求值.
解答: 解:原式=0.25-2+(
8
27
)-
1
3
-
1
2
lg16-2lg5+(
1
3
)0
=16+
3
2
-2lg2-2lg5+1=1
33
2
點(diǎn)評(píng):本題考查了指數(shù)冪的運(yùn)算,對(duì)數(shù)的運(yùn)算化簡(jiǎn),屬于計(jì)算題,特別容易出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,AB=4,AC=2,若|λ
AB
+(2-2λ)
AC
|的最小值是2,則對(duì)于△ABC內(nèi)一點(diǎn)P,則
PA
•(
PB
+
PC
)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=4x相交于A、B不同的兩點(diǎn).
(1)如果直線l過拋物線的焦點(diǎn),求
OA
OB
的值;
(Ⅱ)如果
OA
OB
=-4,求直線l被拋物線截得弦AB長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}和{bn}都是等差數(shù)列,其中a2+b2=20,a99+b99=100,則an+bn的前100項(xiàng)和S100=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若?x∈D,總有f(x)≤F(x)≤g(x),則稱F(x)為f(x)與g(x)在D上的一個(gè)“分界函數(shù)”,如?x∈[0,1],1-x≤(1+x)e-2x
1
1+x
成立,則稱y=(1+x)e-2x是y=1-x和y=
1
1+x
在[0,1]上的一個(gè)“分界函數(shù)”.
(Ⅰ)求證:y=cosx是y=1-
1
2
x2和y=1-
1
4
x2在[0,1]上的一個(gè)“分界函數(shù)”;
(Ⅱ)若f(x)=
x3
2
+ax+1和g(x)=(1+x)e-2x-2xcosx在[0,1]上一定存在一個(gè)“分界函數(shù)”,試確定實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈[-2,2]時(shí),x2-2x+2≥t2恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R,
(1)求當(dāng)a分別取-1,0,1時(shí),f(x)的最小值;
(2)求f(x)的最小值h(a)的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an+(-1)n(n∈N*).
(1)若bn=a2n-1-
1
3
,求證:數(shù)列{bn}是等比數(shù)列并求其通項(xiàng)公式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求證:
1
a1
+
1
a2
+…+
1
an
<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一正方體內(nèi)接于一個(gè)球,經(jīng)過球心作一個(gè)截面,則截面的可能圖形為
 
(只填寫序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案