7.等差數(shù)列{an}中的a1,a4031是函數(shù)f(x)=x3-12x2+6x的極值點(diǎn),則log2a2016=(  )
A.2B.3C.4D.5

分析 利用導(dǎo)數(shù)即可得出函數(shù)的極值點(diǎn),再利用等差數(shù)列的性質(zhì)及其對(duì)數(shù)的運(yùn)算法則即可得出.

解答 解:f′(x)=3x2-24x+6,
∵a1、a4031是函數(shù)f(x)=x3-12x2+6x的極值點(diǎn),
∴a1、a4031是方程3x2-24x+6=0的兩實(shí)數(shù)根,則a1+a4031=8.而{an}為等差數(shù)列,
∴a1+a4031=2a2016,即a2016=4,
從而log2a2016=2.
故選:A.

點(diǎn)評(píng) 熟練掌握利用導(dǎo)數(shù)研究函數(shù)的極值、等差數(shù)列的性質(zhì)及其對(duì)數(shù)的運(yùn)算法則是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓方程為x2+y2+4mx-12y+4m-2=0與直線x-y+1=0.
(1)用m去表示圓的半徑和面積;
(2)求圓面積最小時(shí),圓的一般式方程;
(3)當(dāng)圓面積最小時(shí),判斷圓與直線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過100千米/小時(shí).已知貨車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.01;固定部分為100元.
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,AB是圓的直徑,ABCD是圓內(nèi)接四邊形,BD∥CE,∠AEC=40°,則∠BCD=( 。
A.160°B.150°C.140°D.130°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=log2$\frac{2x-1}{2x+1}$,g(x)=log2$\frac{2x+1}{8x+12}$.
(1)求證:函數(shù)y=f(x)的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
(2)求證:f(x+1)-2=g(x),并指出函數(shù)y=g(x)圖象對(duì)稱中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=$\frac{xlnx}{x-1}$,g(x)=-$\frac{1}{2}a({x^2}-x-2)$,其中a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意x>1,都有f(x)>g(x-1)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}\right.$(α為參數(shù)),若以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(sinθ-cosθ)=4,
(1)已知點(diǎn)M的極坐標(biāo)為(2$\sqrt{2}$,$\frac{π}{4}$),寫出點(diǎn)M關(guān)于直線l對(duì)稱點(diǎn)M′的直角坐標(biāo);
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓C的方程為x2+y2=4.
(1)求過點(diǎn)P(1,2)且與圓C相切的直線l的方程;
(2)直線l過點(diǎn)P(1,2),且與圓C交于A,B兩點(diǎn),若|AB|=2$\sqrt{3}$,求直線l的方程;
(3)M是圓C上的動(dòng)點(diǎn),定點(diǎn)N的坐標(biāo)為(0,1),若Q為線段MN的中點(diǎn),求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-alnx+1(a∈R).
(1)若函數(shù)f(x)在[1,2]上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若-2≤a<0,對(duì)任意x1,x2∈[1,2],不等式|f(x1)-f(x2)|≤m|$\frac{1}{x_1}-\frac{1}{x_2}$|恒成立,求m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案