分析 (1)根據(jù)題意可知A,B,C,F(xiàn)的坐標(biāo),進(jìn)而求得AC和BF的直線(xiàn)方程,聯(lián)立求得焦點(diǎn)G的坐標(biāo),進(jìn)而求得EG,BF的斜率,根據(jù)二者的乘積為-1判斷出EG⊥BF;
(2)求得圓心和半徑,進(jìn)而求得圓的標(biāo)準(zhǔn)方程.
解答 (1)證明:由題意,A(3,0),B(3,2),C(-3,2),F(xiàn)(-1,0).
所以直線(xiàn)AC和直線(xiàn)BF的方程分別為:x+3y-3=0,x-2y+1=0,
由$\left\{\begin{array}{l}{x+3y-3=0}\\{x-2y+1=0}\end{array}\right.$,解得x=$\frac{3}{5}$,y=$\frac{4}{5}$,
所以G點(diǎn)的坐標(biāo)為($\frac{3}{5}$,$\frac{4}{5}$).
所以kEG=-2,KBF=$\frac{1}{2}$,
因?yàn)閗EG•kBF=-1,所以EG⊥BF,
(2)解:⊙H的圓心為BE中點(diǎn)H(2,1),
半徑為BH=$\sqrt{2}$,
所以⊙H方程為(x-2)2+(y-1)2=2.
點(diǎn)評(píng) 本題主要考查了直線(xiàn)與直線(xiàn)的位置關(guān)系,考查直線(xiàn)與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{5}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ${log_{\frac{1}{3}}}5$ | B. | 5 | C. | -5 | D. | ${({\frac{1}{3}})^5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com