A. | 11 | B. | 99 | C. | 120 | D. | 121 |
分析 根據(jù)裂項求和即可得到答案.
解答 解:$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$,
∴Sn=$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{2+\sqrt{3}}$+…+$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=($\sqrt{2}$-1)+($\sqrt{3}$$-\sqrt{2}$)+…+($\sqrt{n+1}$-$\sqrt{n}$)=$\sqrt{n+1}$-1,
∵Sm=9,
∴$\sqrt{m+1}$-1=9,
解得m=99,
故選:B.
點評 本題給出一個特殊的數(shù)列,在已知前m項的和的情況下,求正整數(shù)m的值,著重考查了數(shù)列求和中裂項累加的方法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | |$\overrightarrow$|=1 | B. | ($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$ | C. | $\overrightarrow{a}$•$\overrightarrow$=1 | D. | |$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,1] | B. | (-1,1] | C. | [1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?n∈N,n2≤2n | B. | ?n∈N,n2>2n | C. | ?n∈N,n2>2n | D. | ?n∈N,n2=2n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{-\frac{1}{6}+2kπ,\frac{5}{6}+2kπ}],k∈z$ | B. | $[{-\frac{1}{6}+2k,\frac{5}{6}+2k}],k∈z$ | ||
C. | $[{\frac{5}{6}+2kπ,\frac{11}{6}+2kπ}],k∈z$ | D. | $[{\frac{5}{6}+2k,\frac{11}{6}+2k}],k∈z$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com