已知球的直徑SC=4,A,B是該球球面上的兩點(diǎn),AB=,,則棱錐S—ABC的體積為( )
A. | B. | C. | D.1 |
C
解析試題分析:球心為點(diǎn)O,作AB中點(diǎn)D,連接OD,CD,說(shuō)明SC是球的直徑,利用余弦定理,三角形的面積公式求出S△SCD,和棱錐的高AB,即可求出棱錐的體積。
設(shè)球心為點(diǎn)O,作AB中點(diǎn)D,連接OD,CD 因?yàn)榫段SC是球的直徑,所以它也是大圓的直徑,則易得:∠SAC=∠SBC=90°所以在Rt△SAC中,SC=4,∠ASC="30°" 得:AC=2,SA=2
又在Rt△SBC中,SC=4,∠BSC="30°" 得:BC=2,SB=2則:SA=SB,AC=BC
因?yàn)辄c(diǎn)D是AB的中點(diǎn)所以在等腰三角形ASB中,SD⊥AB且SD=
在等腰三角形CAB中,CD⊥AB且CD=
又SD交CD于點(diǎn)D 所以:AB⊥平面SCD 即:棱錐S-ABC的體積:V=AB•S△SCD,
因?yàn)椋篠D=,CD=,SC="4" 所以由余弦定理得:cos∠SDC=(SD2+CD2-SC2)
則:sin∠SDC=
由三角形面積公式得△SCD的面積S=SD•CD•sin∠SDC="=3"
所以:棱錐S-ABC的體積:V=AB•S△SCD=,故選C
考點(diǎn):考查了簡(jiǎn)單幾何體組合體的運(yùn)用。
點(diǎn)評(píng):本題是中檔題,考查球的內(nèi)接棱錐的體積的求法,考查空間想象能力,計(jì)算能力,有難度的題目,?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
網(wǎng)格紙的小正方形邊長(zhǎng)為1,一個(gè)正三棱錐的左視圖如圖所示,則這個(gè)正三棱錐的體積為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,一個(gè)簡(jiǎn)單空間幾何體的三視圖其主視圖與側(cè)視圖都是邊長(zhǎng)為2的正三角形,俯視圖輪廓為正方形,則此幾何體的側(cè)面積是
A. | B.12 |
C. | D.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知球的半徑為2,相互垂直的兩個(gè)平面分別截球面得兩個(gè)圓,若兩圓的公共弦長(zhǎng)為2,則兩圓的圓心距等于( )
A.1 | B. | C. | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,在正方體中,點(diǎn)在線段上移動(dòng),則異面直線與所成的角的取值范圍( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
將正方形沿對(duì)角線折成直二面角,有如下四個(gè)結(jié)論:
①⊥;②△是等邊三角形;③與平面所成的角為60°;④與所成的角為60°.其中錯(cuò)誤的結(jié)論是( )
A.① | B.② | C.③ | D.④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com