(本小題滿分14分)
設(shè)動(dòng)圓過點(diǎn),且與定圓內(nèi)切,動(dòng)圓圓心的軌跡記為曲線,點(diǎn)的坐標(biāo)為.
(1)求曲線的方程;
(2)若點(diǎn)為曲線上任意一點(diǎn),求點(diǎn)和點(diǎn)的距離的最大值;
(3)當(dāng)時(shí),在(2)的條件下,設(shè)是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn),記△的面積為,以為邊長的正方形的面積為.若正數(shù)滿足,問是否存在最小值?若存在,求出此最小值;若不存在,請(qǐng)說明理由.
(本小題滿分14分)
(1).
(2) .
(3)存在最小值.
【解析】(本小題滿分14分)
解: (1)定圓圓心為,半徑為. --------------------------------------------1分
設(shè)動(dòng)圓圓心為,半徑為,由題意知,,, ----------------------------------------------------------------2分
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012051811462709372675/SYS201205181147243750307596_DA.files/image012.png">,
所以點(diǎn)的軌跡是以、為焦點(diǎn),長軸長為的橢圓, -------------3分
故曲線的方程為. --------------------------------------------------------4分
(2)設(shè),則
, -----------------------------------------------------5分
令,,所以,
當(dāng),即時(shí),在上是減函數(shù),
; ----------------------------------------------6分
當(dāng),即時(shí),在上是增函數(shù),在上是減函數(shù),則; -----------------------7分
當(dāng),即時(shí),在上是增函數(shù),
. -----------------------------------------------------------8分
所以, . --------------------------9分
(3)當(dāng)時(shí),,于是,.
若正數(shù)滿足條件,則, -------------------------10分
即,所以 . -----------------------------11分
令,設(shè),則,,于是
所以,當(dāng),即,時(shí),,
----------------------------------------------13分
所以, ,即.所以,存在最小值. ------------------------14分
另解:當(dāng)時(shí),,于是,.
若正數(shù)滿足條件,則, -------------------------10分
即,所以 . ---------------------------11分
令,則,
由,得.
當(dāng)時(shí),;當(dāng)時(shí),.
故當(dāng)時(shí),, ---------------------------------------------13分
所以, ,即.所以,存在最小值. -----------------------14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com