(本小題滿分14分)

已知F1F2分別是橢圓+=1的左、右焦點,曲線C是以坐標原點為頂點,以F2為焦點的拋物線,自點F1引直線交曲線CPQ兩個不同的交點,點P關于x軸的對稱點記為M.設=λ.

(Ⅰ)求曲線C的方程;

(Ⅱ)證明:=-λ;

(Ⅲ)若λ∈[2,3],求|PQ|的取值范圍.

 

 

【答案】

解:(Ⅰ)∵橢圓+=1的右焦點F2的坐標為(1,0),

∴可設曲線C的方程為y2=2px.(p>0)

p=2.

曲線C的方程為y2=4x.                                   (3分)

(Ⅱ)設P(x1y1),Q(x2y2),M(x1,-y1).

λ,

x1+1=λ(x2+1). ①

y1λy2, ②

yλ2y,

y=4x1,y=4x2.

x1λ2x2.、

③代入①得λ2x2+1=λx2λ.

λx2(λ-1)=λ-1.

λ≠1,∴x2=,x1λ.

=(x1-1,-y1).

由②知,-y1=-λy2,

=-λ(-1,y2),

=-λ.

=-λ.                                          (9分)

(Ⅲ)由(Ⅱ)知x2=,x1λ,得x1x2=1.

y·y=16x1x2=16.

y1y2>0,∴y1y2=4.

則|PQ|2=(x1x2)2+(y1y2)2

xxyy-2(x1x2y1y2)

=(λ+)2+4(λ+)-12

=(λ++2)2-16.

λ∈[2,3],∴λ+∈.

∴|PQ|2∈.

得|PQ|∈.    

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案