7.已知函數(shù)f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,x=5是函數(shù)y=f(x)的一個(gè)極值點(diǎn)
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

分析 (1)求出曲線y=f(x)的導(dǎo)數(shù),可得f′(5)=0,可求出a的值;
(2)根據(jù)(1)可得函數(shù)的解析式和導(dǎo)函數(shù)的解析式,分析導(dǎo)函數(shù)的符號(hào),進(jìn)而可得函數(shù)f(x)的單調(diào)區(qū)間與極值.

解答 解:(1)∵f′(x)=$\frac{1}{4}$-$\frac{a}{{x}^{2}}$-$\frac{1}{x}$,
∴f′(5)=0,
解得:a=$\frac{5}{4}$.
(2)由(1)知:f(x)=$\frac{x}{4}$+$\frac{5}{4x}$-lnx-$\frac{3}{2}$,
f′(x)=$\frac{{x}^{2}-4x-5}{{4x}^{2}}$(x>0),
令f′(x)=0,
解得x=5,或x=-1(舍),
∵當(dāng)x∈(0,5)時(shí),f′(x)<0,
當(dāng)x∈(5,+∞)時(shí),f′(x)>0,
故函數(shù)f(x)的單調(diào)遞增區(qū)間為(5,+∞);
單調(diào)遞減區(qū)間為(0,5);
當(dāng)x=5時(shí),函數(shù)取極小值-ln5.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值,是導(dǎo)數(shù)的綜合應(yīng)用,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2).
(1)求$\overrightarrow{a}$-2$\overrightarrow$的坐標(biāo);
(2)當(dāng)k為何值時(shí),k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線?
(3)設(shè)向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,求2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x2+ax與g(x)=ln(x+1)在原點(diǎn)處有公共的切線.
(1)求實(shí)數(shù)a的值;
(2)求h(x)=f(x)-g(x)的極植.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)函數(shù)f(x)=ax2+ex(a∈R)有且僅有一個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(0,+∞)∪{-$\frac{e}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)函數(shù)$f(x)=\frac{lnx}{x}$,則f(x)的極大值為(  )
A.-eB.$\frac{1}{e}$C.e2D.-$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=kxlnx(k≠0)有極小值$-\frac{1}{e}$.
(1)求實(shí)數(shù)k的值;
(2)設(shè)函數(shù)g(x)=x-2ex-1,證明:當(dāng)x>0時(shí),exf(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(a-1)x-lnx(a∈R且a≠0).
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn).如果在曲線C上存在點(diǎn)M(x0,y0),使得:①x0=$\frac{{x}_{1}+{x}_{2}}{2}$;②曲線C在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值和諧切線”.當(dāng)a=2時(shí),函數(shù)f(x)是否存在“中值和諧切線”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)求證$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$;
(2)如圖,已知AB、CD相交于O,△ACO≌△BDO,AE=BF,證明:CE=FD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知點(diǎn)F是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一個(gè)焦點(diǎn),過(guò)點(diǎn)F且斜率為$\frac{{\sqrt{3}}}{3}$的直線l與圓x2+y2=a2相切,則雙曲線的離心率為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{5}$C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案