【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)P為直線l上且不在x軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為ABC、D、O為坐標(biāo)原點(diǎn).

1)求的周長(zhǎng);

2)設(shè)直線的斜線分別為,證明:

3)問直線l上是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率滿足?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

【答案】1;(2)見解析;(3)存在,

【解析】

1)根據(jù)橢圓定義可知所求三角形周長(zhǎng)為,結(jié)合橢圓方程可得到結(jié)果;

2)由橢圓方程可知焦點(diǎn)坐標(biāo),設(shè),利用兩點(diǎn)連線斜率公式表示出,代入整理可得結(jié)論;

3)假設(shè)存在點(diǎn)滿足題意,假設(shè)直線,與橢圓方程聯(lián)立,利用韋達(dá)定理的表示出,同理可得,由可得到關(guān)于的方程;根據(jù)(2)中結(jié)論知,聯(lián)立求得,進(jìn)而得到兩直線方程,兩直線方程聯(lián)立可求得滿足題意的點(diǎn)坐標(biāo).

1)由橢圓定義知:

的周長(zhǎng)為:

2)由題意得:,,設(shè)

,

3)假設(shè)存在點(diǎn),使得

設(shè),,

設(shè)直線;直線

聯(lián)立得:

同理可得:

…①

由(2)知,…②

①②聯(lián)立可解得:

存在點(diǎn),使得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)P(0,1)且互相垂直的兩條直線分別與圓O:交于點(diǎn)A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點(diǎn)C,D.

(1)若AB=,求CD的長(zhǎng);

(2)若CD中點(diǎn)為E,求△ABE面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:,,,一束光線從點(diǎn)出發(fā)發(fā)射到上的點(diǎn)經(jīng)反射后,再經(jīng)反射,落到線段上(不含端點(diǎn))斜率的范圍為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,內(nèi)接于圓的正方形邊長(zhǎng)為1,圓內(nèi)切于正方形,正方形內(nèi)接于圓,···,正方形內(nèi)接于圓,圓內(nèi)切于正方形,正方形內(nèi)接于圓,由此無窮個(gè)步驟進(jìn)行下去記圓的面積記作,記正方形的面積記作

1)求的值

2)記的所有項(xiàng)和為,的所有項(xiàng)和為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線y=5,:

(1)曲線上與直線y=2x-4平行的切線方程.

(2)求過點(diǎn)P(0,5),且與曲線相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某單位全體員工年齡頻率分布表,經(jīng)統(tǒng)計(jì),該單位35歲以下的青年職工中,男職工和女職工人數(shù)相等,且男職工的年齡頻率分布直方圖和如下:

年齡(歲)

[25,30)

[30,35)

[35,40)

[40,45)

[45,50)

[50,55)

合計(jì)

人數(shù)(人)

6

18

50

31

19

16

140

(Ⅰ)求;

(Ⅱ)求該單位男女職工的比例;

(Ⅲ)若從年齡在[25,30)歲的職工中隨機(jī)抽取兩人參加某項(xiàng)活動(dòng),求恰好抽取一名男職工和一名女職工的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有甲,乙兩個(gè)車間生產(chǎn)同一種產(chǎn)品,,甲車間有工人人,乙車間有工人人,為比較兩個(gè)車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對(duì)他們中每位工人生產(chǎn)完成的一件產(chǎn)品的事件(單位:)進(jìn)行統(tǒng)計(jì),按照進(jìn)行分組,得到下列統(tǒng)計(jì)圖.

分別估算兩個(gè)車間工人中,生產(chǎn)一件產(chǎn)品時(shí)間少于的人數(shù)

分別估計(jì)兩個(gè)車間工人生產(chǎn)一件產(chǎn)品時(shí)間的平均值,并推測(cè)車哪個(gè)車間工人的生產(chǎn)效率更高?

從第一組生產(chǎn)時(shí)間少于的工人中隨機(jī)抽取人,記抽取的生產(chǎn)時(shí)間少于的工人人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中

①.對(duì)于命題:存在,則;

②.命題“若,則函數(shù)上是增函數(shù)”的逆命題為假命題;

③.若為真命題,則均為真命題;

④.命題“若,則”的逆否命題是“若,則”.

錯(cuò)誤的是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心為(1,1),直線與圓C相切.

1)求圓C的標(biāo)準(zhǔn)方程;

2)若直線過點(diǎn)(2,3),且被圓C所截得的弦長(zhǎng)為2,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案