【題目】將函數(shù)y=3sin(2x+ )的圖象向右平移 個單位長度,所得圖象對應(yīng)的函數(shù)(
A.在區(qū)間[ , ]上單調(diào)遞減
B.在區(qū)間[ ]上單調(diào)遞增
C.在區(qū)間[﹣ , ]上單調(diào)遞減
D.在區(qū)間[﹣ , ]上單調(diào)遞增

【答案】B
【解析】解:把函數(shù)y=3sin(2x+ )的圖象向右平移 個單位長度,
得到的圖象所對應(yīng)的函數(shù)解析式為:y=3sin[2(x﹣ )+ ].
即y=3sin(2x﹣ ).
當(dāng)函數(shù)遞增時,由 ,得
取k=0,得
∴所得圖象對應(yīng)的函數(shù)在區(qū)間[ ]上單調(diào)遞增.
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若直線過點,求直線的極坐標(biāo)方程;

(2)若直線與曲線交于兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗.所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,…,第五組.如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為(

A.6
B.8
C.12
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時,;當(dāng)兩條棱平行時,的值為兩條棱之間的距離;當(dāng)兩條棱異面時,

(1)求概率;

(2)求的分布列,并求其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,, 平面,Q是AD的中點,M是棱PC上的點,,.

(1)求證:平面;

(2)若平面QMB與平面PDC所成的銳二面角的大小為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在[0,1]上的函數(shù)f(x)滿足:
①f(0)=f(1)=0;
②對所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.
若對所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,則m的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三名大學(xué)生參加學(xué)校組織的“國學(xué)達人”挑戰(zhàn)賽, 每人均有兩輪答題機會,當(dāng)且僅當(dāng)?shù)谝惠啿贿^關(guān)時進行第二輪答題.根據(jù)平時經(jīng)驗,甲、乙、丙三名大學(xué)生每輪過關(guān)的概率分別為,且三名大學(xué)生每輪過關(guān)與否互不影響.

(1)求甲、乙、丙三名大學(xué)生都不過關(guān)的概率;

(2)記為甲、乙、丙三名大學(xué)生中過關(guān)的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機用戶中隨機抽取名進行調(diào)查,將受訪用戶按年齡分成組: , ,…, ,并整理得到如下頻率分布直方圖:

(Ⅰ)求的值;

(Ⅱ)從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機用戶中隨機抽取一人,估計其年齡低于歲的概率;

(Ⅲ)估計春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機用戶的平均年齡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f0(x)= (x>0),設(shè)fn(x)為fn1(x)的導(dǎo)數(shù),n∈N*
(1)求2f1 )+ f2 )的值;
(2)證明:對任意n∈N* , 等式|nfn1 )+ fn )|= 都成立.

查看答案和解析>>

同步練習(xí)冊答案