8.在△ABC中,A為銳角,|AB|=|AC|+6,|AB|•|AC|=64,且S△ABC=16$\sqrt{3}$,求以B,C為焦點,且過點A的雙曲線的方程.

分析 利用三角形的面積公式,求出sinA=$\frac{\sqrt{3}}{2}$,可得cosA=$\frac{1}{2}$,利用余弦定理求出|BC|,再建立坐標系,即可求以B,C為焦點,且過點A的雙曲線的方程.

解答 解:在△ABC中,∵|AB|•|AC|=64,且S△ABC=16$\sqrt{3}$,
∴$\frac{1}{2}×64×sinA$=16$\sqrt{3}$,
∴sinA=$\frac{\sqrt{3}}{2}$,
∵A為銳角,
∴cosA=$\frac{1}{2}$,
設|AC|=x,|AB|=x+6,∴|BC|=$\sqrt{{x}^{2}+(x+6)^{2}-2x•(x+6)•\frac{1}{2}}$=$\sqrt{x(x+6)+36}$=10,
∴以BC所在直線為x軸,BC的垂直平分線為y軸建立坐標系,可得a=3,c=5,
∴b=4.
∴雙曲線的方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1.

點評 本題考查雙曲線的定義與方程,考查正弦、余弦定理,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知x>0,y>0,lg2x+lg8y=lg2,則$\frac{1}{x}+\frac{2}{y}$的最小值是( 。
A.$7+2\sqrt{6}$B.$4+\sqrt{3}$C.$7+\sqrt{6}$D.$4+2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.《孫子算經(jīng)》是我國古代內(nèi)容極為豐富的數(shù)學名著,其中一個問題的解答可以用如圖的算法來實現(xiàn),若輸出的a,b分別為17,23,則輸入的S,T分別為( 。
A.S=40,T=120B.S=40,T=126C.S=42,T=126D.S=42,T=130

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.微信是騰訊公司推出的一款手機通訊軟件,它支持發(fā)送語音、視頻、圖片和文字等,一推出便風靡全國,甚至涌現(xiàn)出一批在微信朋友圈銷售商品的人(被稱為微商).經(jīng)調(diào)查,年齡在40歲以下(不包括40歲)的微信用戶每天使用微信的時間不低于8小時的概率為$\frac{3}{5}$,年齡在40歲以上(包括40歲)的微信用戶每天使用微信的時間不低于8小時的概率為p,將每天使用微信的時間不低于8小時的微信用戶稱為“微信狂”,若甲(21)歲、乙(36歲)、丙(48歲)三人中有且僅有一人是“微信狂”的概率為$\frac{28}{75}$
(1)求甲、乙、丙三人中至少有兩人是“微信狂”的概率;
(2)記甲、乙、丙三人中是“微信狂”的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距F1F2的長為2,經(jīng)過第二象限內(nèi)一點P(m,n)的直線$\frac{mx}{{a}^{2}}$+$\frac{ny}{^{2}}$=1與圓x2+y2=a2交于A,B兩點,且OA=$\sqrt{2}$.
(1)求PF1+PF2的值;
(2)若$\overrightarrow{AB}$•$\overrightarrow{{F}_{1}{F}_{2}}$=$\frac{8}{3}$,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知單位向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知復數(shù)z滿足z$\overline{z}$+2i$\overline{z}$=3+ai(a∈R),且z對應的點在第二象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知z=(m+3)+(m-1)i在復平面內(nèi)對應的點在第四象限,則實數(shù)m的取值范圍是( 。
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.給出以下四個函數(shù)的大致圖象:則函數(shù)f(x)=xlnx,g(x)=$\frac{lnx}{x}$,h(x)=xex,t(x)=$\frac{e^x}{x}$對應的圖象序號順序正確的是( 。
A.②④③①B.④②③①C.③①②④D.④①②③

查看答案和解析>>

同步練習冊答案