4.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,點D,E分別是AA1,BC的中點.
(1)證明:DE∥平面A1B1C;
(2)若AB=2,∠BAC=60°,求直線DE與平面ABB1A1所成角的正弦值.

分析 (1)取AC的中點F,連接DF,EF,由E是BC的中點,利用三角形中位線定理可得EF∥AB,再利用三棱柱的性質(zhì)、線面平行的判定定理可得:EF∥平面A1B1C,DF∥平面A1B1C,可得平面DEF∥平面A1B1C,即可證明DE∥平面A1B1C.
(2)過點A1作A1O⊥AC,垂足為O,連接OB,利用面面垂直的性質(zhì)定理可得:A1O⊥平面ABC,A1O⊥OB,A1O⊥OC.利用余弦定理得,OB2=OA2+AB2-2OA•ABcos∠BAC=3,可得$OB=\sqrt{3}$,進而得到OB⊥AC.分別以O(shè)B,OC,OA1為x軸,y軸,z軸,建立如圖的空間直角坐標系O-xyz,利用平面法向量的夾角公式即可得出.

解答 (1)證明:取AC的中點F,連接DF,EF,∵E是BC的中點,∴EF∥AB,
∵ABC-A1B1C1是三棱柱,∴AB∥A1B1,∴EF∥A1B1,
∴EF∥平面A1B1C,
∵D是AA1的中點,∴DF∥A1C,∴DF∥平面A1B1C,
又EF∩DE=E,
∴平面DEF∥平面A1B1C,∴DE∥平面A1B1C;
(2)解:過點A1作A1O⊥AC,垂足為O,連接OB,
∵側(cè)面ACC1A⊥底面ABC,∴A1O⊥平面ABC,∴A1O⊥OB,A1O⊥OC,
∵∠A1AC=60°,AA1=2,∴OA=1,$O{A_1}=\sqrt{3}$,
∵AB=2,∠OAB=60°,由余弦定理得,OB2=OA2+AB2-2OA•ABcos∠BAC=3,
∴$OB=\sqrt{3}$,∠AOB=90°,∴OB⊥AC,
分別以O(shè)B,OC,OA1為x軸,y軸,z軸,建立如圖的空間直角坐標系O-xyz,
由題設(shè)可得A(0,-1,0),C(0,3,0),$B(\sqrt{3},0,0)$,${A_1}(0,0,\sqrt{3})$,$D(0,-\frac{1}{2},\frac{{\sqrt{3}}}{2})$,$E(\frac{{\sqrt{3}}}{2},\frac{3}{2},0)$,
設(shè)$\overrightarrow m=({x_1},{y_1},{z_1})$是平面ABB1A1的一個法向量,
則$\left\{{\begin{array}{l}{\overrightarrow m•\overrightarrow{AB}=0}\\{\overrightarrow n•\overrightarrow{A{A_1}}=0}\end{array}}\right.$,∴$\left\{{\begin{array}{l}{\sqrt{3}{x_1}+{y_1}=0}\\{{y_1}+\sqrt{3}{z_1}=0}\end{array}}\right.$,
令z1=1,∴$\overrightarrow m=(1,-\sqrt{3},1)$,
∵$\overrightarrow{DE}=(\frac{{\sqrt{3}}}{2},2,-\frac{{\sqrt{3}}}{2})$,
∴$cos<\overrightarrow m,\overrightarrow{DE}>$=$\frac{{\overrightarrow m•\overrightarrow{DE}}}{{|\overrightarrow m||\overrightarrow{DE}|}}=\frac{{-2\sqrt{330}}}{55}$,
∴直線DE與平面ABB1A1所成角的正弦值為$\frac{{2\sqrt{330}}}{55}$.

點評 本題考查了空間線面面面平行與垂直的判定性質(zhì)定理、數(shù)量積的運算性質(zhì)、法向量的夾角公式、三角形中位線定理、余弦定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校高一(1)(2)兩個班聯(lián)合開展“詩詞大會進校園,國學(xué)經(jīng)典潤心田”古詩詞競賽主題班會活動,主持人從這兩個班分別隨機選出20名同學(xué)進行當場測試,他們的測試成績按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分組,分別用頻率分布直方圖與莖葉圖統(tǒng)計如圖(單位:分):

(2)班20名學(xué)生成績莖葉圖:
 4 5
 5 2
 64 5 6 8
 7 0 5 5 8 8 8 8 9
 80 0 5 5  
 94 5 
(Ⅰ)分別計算兩個班這20名同學(xué)的測試成績在[80,90)的頻率,并補全頻率分布直方圖;
(Ⅱ)分別從兩個班隨機選取1人,設(shè)這兩人中成績在[80,90)的人數(shù)為X,求X的分布列(頻率當作概率使用).
(Ⅲ)運用所學(xué)統(tǒng)計知識分析比較兩個班學(xué)生的古詩詞水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)F(x)=f(x)+x2是奇函數(shù),且f(2)=1,則f(-2)=( 。
A.9B.-9C.-7D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若直線x=$\frac{5}{4}$π和x=$\frac{9}{4}$π是函數(shù)y=sin(ωx+φ)(ω>0)圖象的兩條相鄰對稱軸,則φ的一個可能取值為( 。
A.$\frac{3π}{4}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知e為自然對數(shù)的底,a=($\frac{2}{e}$)-0.2,b=($\frac{e}{2}$)0.4,c=$lo{g}_{\frac{2}{e}}e$,則a,b,c的大小關(guān)系是(  )
A.c<a<bB.c<b<aC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\left\{\begin{array}{l}{-x-1,x<1}\\{(\frac{1}{2})^{x-1},x≥1}\end{array}\right.$的圖象與函數(shù)g(x)=log2(x+a)(a∈R)的圖象恰有一個交點,則實數(shù)a的取值范圍是(  )
A.a>1B.a≤-$\frac{3}{4}$C.a≥1或a<-$\frac{3}{4}$D.a>1或a≤-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+x2-2ax+1(a為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對任意的$a∈({1,\sqrt{2}})$,都存在x0∈(0,1]使得不等式$f({x_0})+lna>m({a-{a^2}})$成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)直角坐標平面內(nèi)與兩個定點A(-2,0),B(2,0)的距離之差的絕對值等于2的點的軌跡是E.過點B作與x軸垂直的直線l與曲線E交于C,D兩點,則$\overrightarrow{AC}•\overrightarrow{BD}$=( 。
A.-9B.-3C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD為平行四邊形,平面PAB⊥平面ABCD,PB=PC,∠ABC=45°.
(Ⅰ)求證:AB⊥PC;
(Ⅱ)若三角形PAB是邊長為2的等邊三角形,求三棱錐P-ABC外接球的表面積.

查看答案和解析>>

同步練習(xí)冊答案