已知x,y∈Z,n∈N*,設(shè)f(n)是不等式組
x≥1
0≤y≤-x+n
表示的平面區(qū)域內(nèi)可行解的個(gè)數(shù),則f(2)=______.
當(dāng)n=2時(shí),不等式組對應(yīng)為
x≥1
y≥0
y≤-x+2
,
當(dāng)x=1時(shí),不等式組等價(jià)為
x=1
y≥0
y≤1
,此時(shí)0≤y≤1,即y=0或y=1,此時(shí)對應(yīng)整數(shù)點(diǎn)為(1,0),(1,1).
當(dāng)x=2時(shí),不等式組等價(jià)為
x=2
y≥0
y≤0
,此時(shí)y=0,此時(shí)對應(yīng)整數(shù)點(diǎn)為(2,0).
當(dāng)x≥3時(shí),不等式組等價(jià)為
x=3
y≥0
y≤-1
,此時(shí)不等式無解.
故f(2)=3,
故答案為:3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,試證:;并求函數(shù))的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知
x+y-5≤0
y≥x
x≥1
,則z=2x+3y的最大值為( 。
A.5B.10C.
25
2
D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某營養(yǎng)師要求為某個(gè)兒童預(yù)訂午餐和晚餐.已知一個(gè)單位的午餐含12個(gè)單位的碳水化合物,6個(gè)單位的蛋白質(zhì)和6個(gè)單位的維生素C;一個(gè)單位的晚餐含8個(gè)單位的碳水化合物,6個(gè)單位的蛋白質(zhì)和10個(gè)單位的維生素C.另外,該兒童這兩餐需要的營狀中至少含64個(gè)單位的碳水化合物和42個(gè)單位的蛋白質(zhì)和54個(gè)單位的維生素C.如果一個(gè)單位的午餐、晚餐的費(fèi)用分別是2.5元和4元,那么要滿足上述的營養(yǎng)要求,并且花費(fèi)最少,應(yīng)當(dāng)為該兒童分別預(yù)訂多少個(gè)單位的午餐和晚餐?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若x,y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2
,目標(biāo)函數(shù)z=ax+2y僅在點(diǎn)(1,0)處取得最小值,則實(shí)數(shù)a的取值范圍是( 。
A.(-1,2)B.(-4,2)C.(-4,0]D.(-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)命題p:
3x+4y-12>0
2x-y-8≤0
x-2y+6≥0
(x,y∈R),命題q:x2+y2≤r2(x、y、r∈R,r>0),若命題q是命題?p的充分非必要條件,則r的最大值為 ______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系xOy中,M為不等式組
2x-y-2≥0
x+2y-1≥0
3x+y-8≤0
所表示的區(qū)域上一動(dòng)點(diǎn),則直線OM斜率的最小值為( 。
A.2B.1C.-
1
3
D.-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

實(shí)數(shù)x,y滿足
x≥1
y≤a(a>1)
x-y≤0
若目標(biāo)函數(shù)z=x+y取得最大值4,則實(shí)數(shù)a的值為( 。
A.4B.3C.2D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知實(shí)數(shù)x,y滿足
x-2y+1≥0
|x|-y-1≤0
,則z=2x+y的最大值為( 。
A.4B.6C.8D.10

查看答案和解析>>

同步練習(xí)冊答案