【題目】已知函數(shù)fx)=.

1)判斷函數(shù)在區(qū)間(1,+∞)上的單調性,并用定義證明你的結論;

2)求該函數(shù)在區(qū)間[2,4]上的最大值和最小值.

【答案】(1)增函數(shù);(2)最小值,最大值.

【解析】

1)根據(jù)函數(shù)單調性定義,任。1<x1<x2,用做差法比較大小,即可證明;

(2)根據(jù)(1)的結論,即可求出最值.

1fx)在(1,+∞)上為增函數(shù),證明如下:任。1<x1<x2,

,

因為-1<x1<x2x11>0,x21>0,x1x2<0,

所以f(x1)f(x2)<0f(x1)<f(x2)

所以fx)在(1,+∞)上為增函數(shù).

2)由(1)知fx)在[2,4]上單調遞增,

所以fx)的最小值為,

最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)討論函數(shù)的單調性;

(2)當時,方程在區(qū)間內有唯一實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,nN*.

1)設f(x)=a0+a1x+a2x2++anxn,

①求a0+a1+a2++an;

②若在a0,a1,a2,…,an中,唯一的最大的數(shù)是a4,試求n的值;

2)設f(x)=b0+b1(x+1)+b2(x+1)2++bn(x+1)n,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),過點作與軸平行的直線交函數(shù)的圖像于點,過點圖像的切線交軸于點,則面積的最小值為____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,.

(1)已知為函數(shù)的公共點,且函數(shù)在點處的切線相同,求的值;

(2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,點在橢圓上,橢圓的離心率是.

(1)求橢圓的標準方程;

(2)設點為橢圓長軸的左端點,為橢圓上異于橢圓長軸端點的兩點,記直線斜率分別為,若,請判斷直線是否過定點?若過定點,求該定點坐標,若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某日A,B,C三個城市18個銷售點的小麥價格如下表:

銷售點序號

所屬城市

小麥價格(元/噸)

銷售點序號

所屬城市

小麥價格(元/噸)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(1)甲以B市5個銷售點小麥價格的中位數(shù)作為購買價格,乙從C市4個銷售點中隨機挑選2個了解小麥價格.記乙挑選的2個銷售點中小麥價格比甲的購買價格高的個數(shù)為,求的分布列及數(shù)學期望;

(2)如果一個城市的銷售點小麥價格方差越大,則稱其價格差異性越大.請你對A,B,C三個城市按照小麥價格差異性從大到小進行排序(只寫出結果).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的奇函數(shù)滿足,且當時,,則下列結論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx)的定義域為R,如果存在函數(shù)gx),使得fxgx)對于一切實數(shù)x都成立,那么稱gx)為函數(shù)fx)的一個承托函數(shù).已知函數(shù)fx=ax2+bx+c的圖象經過點(-10).

1)若a=1,b=2.寫出函數(shù)fx)的一個承托函數(shù)(結論不要求證明);

2)判斷是否存在常數(shù)a,bc,使得y=x為函數(shù)fx)的一個承托函數(shù),且fx)為函數(shù)的一個承托函數(shù)?若存在,求出a,b,c的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案