【題目】已知函數(shù),過點作與軸平行的直線交函數(shù)的圖像于點,過點作圖像的切線交軸于點,則面積的最小值為____.
【答案】
【解析】
求出f(x)的導數(shù),令x=a,求得P的坐標,可得切線的斜率,運用點斜式方程可得切線的方程,令y=0,可得B的坐標,再由三角形的面積公式可得△ABP面積S,求出導數(shù),利用導數(shù)求最值,即可得到所求值.
函數(shù)f(x)=的導數(shù)為f′(x),
由題意可令x=a,解得y,
可得P(a,),
即有切線的斜率為k,
切線的方程為y﹣(x),
令y=0,可得x=a﹣1,
即B( a﹣1,0),
在直角三角形PAB中,|AB|=1,|AP|,
則△ABP面積為S(a)|AB||AP|,a>0,
導數(shù)S′(a),
當a>1時,S′>0,S(a)遞增;當0<a<1時,S′<0,S(a)遞減.
即有a=1處S取得極小值,且為最小值e.
故答案為:e.
科目:高中數(shù)學 來源: 題型:
【題目】《中國詩詞大會》(第二季)亮點頗多,十場比賽每場都有一首特別設計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,曲線由曲線和曲線組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.
(Ⅰ)若,求曲線的方程;
(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸進線上;
(Ⅲ)對于(Ⅰ)中的曲線,若直線過點交曲線于點,求與面積之和的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家舉行大型的促銷活動,經(jīng)測算,當某產(chǎn)品促銷費用為x(萬元)時,銷售量t(萬件)滿足(其中,).現(xiàn)假定產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為元/件.
(1)將該產(chǎn)品的利潤y(萬元)表示為促銷費用x(萬元)的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)當時,求函數(shù)的最大值;
(2)設,求函數(shù)的最大值;
(3)已知,求函數(shù)的最大值;
(4)設,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)若在處取得極值,求過點且與在處的切線平行的直線方程;
(II)當函數(shù)有兩個極值點,且時,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線(為參數(shù)),曲線(為參數(shù)).
(1)設與相交于兩點,求;
(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大時,點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知且,函數(shù),.
(1)指出的單調(diào)性(不要求證明);
(2)若有求的值;
(3)若,求使不等式恒成立的的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com