A. | (1,$\frac{9}{4}$] | B. | [9,+∞) | C. | (1,$\frac{9}{4}$]∪[9,+∞) | D. | [$\frac{3}{2}$,$\frac{9}{4}$]∪[9,+∞) |
分析 求出f(x)的導(dǎo)數(shù),可得極值點(diǎn),分別求出f(0),f(1),f(3),f(4),可得值域;再求g(x)的導(dǎo)數(shù),可得極值點(diǎn),求出g(0),g(1),g(a),g(4),討論a的范圍,分a>4,1<a<3,3≤a≤4,比較可得值域,再由題意可得f(x)的值域包含于g(x)的值域,得到不等式,解不等式即可得到所求范圍.
解答 解:函數(shù)f(x)=x3-6x2+9x,導(dǎo)數(shù)為f′(x)=3x2-12x+9=3(x-1)(x-3),
可得f(x)的極值點(diǎn)為1,3,
由f(0)=0,f(1)=4,f(3)=0,f(4)=4,
可得f(x)在[0,4]的值域?yàn)閇0,4];
g(x)=$\frac{1}{3}$x3-$\frac{a+1}{2}$x2+ax-$\frac{1}{3}$(a>1),
導(dǎo)數(shù)為g′(x)=x2-(a+1)x+a=(x-1)(x-a),
當(dāng)1<x<a時(shí),g′(x)<0,g(x)遞減;
當(dāng)x<1或x>a時(shí),g′(x)>0,g(x)遞增.
由g(0)=-$\frac{1}{3}$,g(1)=$\frac{1}{2}$(a-1),g(a)=-$\frac{1}{6}$a3+$\frac{1}{2}$a2-$\frac{1}{3}$,g(4)=13-4a,
當(dāng)3≤a≤4時(shí),13-4a≤$\frac{1}{2}$(a-1),
g(x)在[0,4]的值域?yàn)閇-$\frac{1}{3}$,$\frac{1}{2}$(a-1)],
由對(duì)任意的x1∈[0,4],總存在x2∈[0,4],使得f(x1)=g(x2),
可得[0,4]⊆[-$\frac{1}{3}$,$\frac{1}{2}$(a-1)],
即有4≤$\frac{1}{2}$(a-1),解得a≥9不成立;
當(dāng)1<a<3時(shí),13-4a>$\frac{1}{2}$(a-1),
g(x)在[0,4]的值域?yàn)閇-$\frac{1}{3}$,13-4a],
由題意可得[0,4]⊆[-$\frac{1}{3}$,13-4a],
即有4≤13-4a,解得a≤$\frac{9}{4}$,即為1<a≤$\frac{9}{4}$;
當(dāng)a>4時(shí),可得g(1)取得最大值,g(4)<-3為最小值,
即有[0,4]⊆[13-4a,$\frac{1}{2}$(a-1)],
可得13-4a≤0,4≤$\frac{1}{2}$(a-1),即a≥$\frac{13}{4}$,且a≥9,
解得a≥9.
綜上可得,a的取值范圍是(1,$\frac{9}{4}$]∪[9,+∞).
故選:C.
點(diǎn)評(píng) 本題考查任意性和存在性問題的解法,注意運(yùn)用轉(zhuǎn)化思想,轉(zhuǎn)化為值域的包含關(guān)系,考查導(dǎo)數(shù)的運(yùn)用以及分類討論思想方法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4≤k≤0 | B. | -4≤k<0 | C. | -4<k≤0 | D. | -4<k<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{42}}{7}$ | B. | $\frac{\sqrt{7}}{7}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8$\sqrt{3}$ | B. | 8 | C. | 16 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com