【題目】已知點在橢圓: ()上,設(shè), , 分別為左頂點、上頂點、下頂點,且下頂點到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點, ()為橢圓上兩點,且滿足,求證: 的面積為定值,并求出該定值.
【答案】(Ⅰ).(Ⅱ).
【解析】試題分析:(Ⅰ)根據(jù)題意列出關(guān)于 、 、的方程組,結(jié)合性質(zhì) ,求出 、 、,即可得結(jié)果;(Ⅱ)直線的方程為,代入橢圓方程,并整理得 ,根據(jù)韋達定理,弦長公式將、點到直線的距離公式將的面積,用 表示,再結(jié)合 ,即可得結(jié)果.
試題解析:(Ⅰ)由題意,得直線的方程為,點,
點到直線的距離 ,整理,得.①
又點在橢圓上, .②
聯(lián)立①②解得, ,
橢圓的方程為.
(Ⅱ)設(shè)直線的方程為,代入橢圓方程,并整理得 .
, ,
, ,
.
又,則由題意,得 .
整理,得,則 ,
整理,得(滿足).
.
又點到直線的距離.
,為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠要建造一個長方體無蓋貯水池,其容積為6400m3 , 深為4m,如果池底每1m2的造價為300元,池壁每1m2的造價為240元,問怎樣設(shè)計水池能使總造價最低,最低總造價是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)都為9.
(1)分別求出的值;
(2)分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件的方差和,并由此分析兩組技工的加工水平;
(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機抽取一名技工,對其加工的零件進行檢測,若兩人加工的合格零件個數(shù)之和大于17,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋擲一枚骰子,當(dāng)它每次落地時,向上一面的點數(shù)稱為該次拋擲的點數(shù),可隨機出現(xiàn)1到6點中的任一個結(jié)果.連續(xù)拋擲兩次,第一次拋擲的點數(shù)記為a,第二次拋擲的點數(shù)記為b.
(1)求直線ax+by=0與直線x+2y+1=0平行的概率;
(2)求長度依次為a,b,2的三條線段能構(gòu)成三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )在一個周期內(nèi)的圖像如圖所示,其中M( ,2),N( ,0).
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且a= ,c=3,f( )= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四面體ABCD中,E,F(xiàn)分別是AC,BD的中點,若AB=2,CD=4,EF⊥AB,則EF與CD所成的角的度數(shù)為( )
A.90°
B.45°
C.60°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有關(guān)x的一元二次方程9x2+6ax﹣b2+4=0.
(1)若a是從1,2,3這三個數(shù)中任取的一個數(shù),b是從0,1,2這三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若a是從區(qū)間[0,3]中任取的一個數(shù),b是從區(qū)間[0,2]中任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α,β是兩個不同的平面,m,n是兩條不同的直線,有如下兩個命題:q:若m⊥α,n⊥β且m∥n,則α∥β;q:若m∥α,n∥β且m∥n,則α∥β.( )
A.命題q,p都正確
B.命題p正確,命題q不正確
C.命題q,p都不正確
D.命題q不正確,命題p正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C為三角形ABC的三內(nèi)角,其對應(yīng)邊分別為a,b,c,若有2acosC=2b+c成立.
(1)求A的大小;
(2)若 ,b+c=4,求三角形ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com