【題目】已知A、B、C為三角形ABC的三內(nèi)角,其對應(yīng)邊分別為a,b,c,若有2acosC=2b+c成立.
(1)求A的大;
(2)若 ,b+c=4,求三角形ABC的面積.
【答案】
(1)解:∵2acosC=2b+c,由正弦定理可知2sinAcosC=2sinB+sinC,①
三角形中有:sinB=sin(A+C)=sinAcosC+cosAsinC,②
聯(lián)立①②可化簡得:2cosAsinC+sinC=0,
在三角形中sinC≠0,得cosA=﹣ ,
又0<A<π,
∴A=
(2)解:由余弦定理a2=b2+c2﹣2bccosA,得(2 )2=(b+c)2﹣2bc﹣2bccos ,即12=16﹣2bc+bc,
解得:bc=4,
則S△ABC= bcsinA= ×4× =
【解析】(1)利用正弦定理化簡已知等式,再利用誘導(dǎo)公式及兩角和與差的正弦函數(shù)公式得到關(guān)系式,聯(lián)立后根據(jù)sinC不為0求出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);(2)利用余弦定理列出關(guān)系式,將a,b+c及cosA的值代入求出bc的值,由sinA與bc的值,利用三角形的面積公式求出即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓: ()上,設(shè), , 分別為左頂點(diǎn)、上頂點(diǎn)、下頂點(diǎn),且下頂點(diǎn)到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn), ()為橢圓上兩點(diǎn),且滿足,求證: 的面積為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(2,﹣1).
(Ⅰ)求過P點(diǎn)且與原點(diǎn)距離為2的直線l的方程;
(Ⅱ)求過P點(diǎn)且與兩坐標(biāo)軸截距相等的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知a3=24,S11=0.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn;
(Ⅲ)當(dāng)n為何值時,Sn最大,并求Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙、丙三個乒乓球協(xié)會的分別選派3,1,2名運(yùn)動員參加某次比賽,甲協(xié)會運(yùn)動員編號分別為A1 , A2 , A3 , 乙協(xié)會編號為A4 , 丙協(xié)會編號分別為A5 , A6 , 若從這6名運(yùn)動員中隨機(jī)抽取2名參加雙打比賽.
(1)用所給編號列出所有可能抽取的結(jié)果;
(2)求丙協(xié)會至少有一名運(yùn)動員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運(yùn)動員來自同一協(xié)會的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為緩解高三學(xué)生的高考壓力,經(jīng)常舉行一些心理素質(zhì)綜合能力訓(xùn)練活動,經(jīng)過一段時間的訓(xùn)練后從該年級800名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行測試,并將其成績分為、、、、五個等級,統(tǒng)計(jì)數(shù)據(jù)如圖所示(視頻率為概率),根據(jù)圖中抽樣調(diào)查的數(shù)據(jù),回答下列問題:
(1)試估算該校高三年級學(xué)生獲得成績?yōu)?/span>的人數(shù);
(2)若等級、、、、分別對應(yīng)100分、90分、80分、70分、60分,學(xué)校要求當(dāng)學(xué)生獲得的等級成績的平均分大于90分時,高三學(xué)生的考前心理穩(wěn)定,整體過關(guān),請問該校高三年級目前學(xué)生的考前心理穩(wěn)定情況是否整體過關(guān)?
(3)以每個學(xué)生的心理都培養(yǎng)成為健康狀態(tài)為目標(biāo),學(xué)校決定對成績等級為的16名學(xué)生(其中男生4人,女生12人)進(jìn)行特殊的一對一幫扶培訓(xùn),從按分層抽樣抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點(diǎn).例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點(diǎn).若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 對任意的正整數(shù)n,都有an=5Sn+1成立,記bn= (n∈N*).
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn , 求證:對任意的n∈N* , 都有Rn<4n;
(3)記cn=b2n﹣b2n﹣1(n∈N*),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn , 求證:對任意n∈N* , 都有Tn< .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com