【題目】地球的公轉(zhuǎn)軌道可以看作是以太陽為一個(gè)焦點(diǎn)的橢圓,根據(jù)開普勒行星運(yùn)動(dòng)第二定律,可知太陽和地球的連線在相等的時(shí)間內(nèi)掃過相等的面積,某同學(xué)結(jié)合物理和地理知識(shí)得到以下結(jié)論:①地球到太陽的距離取得最小值和最大值時(shí),地球分別位于圖中點(diǎn)和點(diǎn);②已知地球公轉(zhuǎn)軌道的長半軸長約為千米,短半軸長約為千米,則該橢圓的離心率約為.因此該橢圓近似于圓形:③已知我國每逢春分(日前后)和秋分(日前后),地球會(huì)分別運(yùn)行至圖中點(diǎn)和點(diǎn),則由此可知我國每年的夏半年(春分至秋分)比冬半年(當(dāng)年秋分至次年春分)要少幾天.以上結(jié)論正確的是(

A.B.①②C.②③D.①③

【答案】A

【解析】

根據(jù)橢圓的幾何性質(zhì)可判斷命題①的正誤;利用橢圓的離心率公式可判斷命題②的正誤;根據(jù)開普勒行星運(yùn)動(dòng)第二定律可判斷命題③的正誤.綜合可得出結(jié)論.

由橢圓的幾何性質(zhì)可知,當(dāng)?shù)厍虻教柕木嚯x取得最小值和最大值時(shí),地球分別位于圖中點(diǎn)和點(diǎn),命題①正確;

,則該橢圓的離心率,命題②錯(cuò)誤;

根據(jù)開普勒行星運(yùn)動(dòng)第二定律,地球從點(diǎn)到點(diǎn)運(yùn)行的速度較快,因此經(jīng)歷的時(shí)間較短,因此夏半年比冬半年多幾天,命題③錯(cuò)誤.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其定義域?yàn)?/span>.(其中常數(shù),是自然對(duì)數(shù)的底數(shù))

1)求函數(shù)的遞增區(qū)間;

2)若函數(shù)為定義域上的增函數(shù),且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位編著,它對(duì)我國民間普及珠算和數(shù)學(xué)知識(shí)起到了很大的作用,是東方古代數(shù)學(xué)的名著.在這部著作中,許多數(shù)學(xué)問題都是以歌訣形式呈現(xiàn)的,九兒問甲歌就是其中一首:一個(gè)公公九個(gè)兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問長兒多少歲,各兒歲數(shù)要詳推.”這首歌決的大意是:一位老公公有九個(gè)兒子,九個(gè)兒子從大到小排列,相鄰兩人的年齡差三歲,并且兒子們的年齡之和為207歲,請(qǐng)問大兒子多少歲,其他幾個(gè)兒子年齡如何推算.”在這個(gè)問題中,記這位公公的第個(gè)兒子的年齡為,則

A.17B.29C.23D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù).

1)討論上的最大值;

2)有幾個(gè),且為常數(shù)),使得函數(shù)上的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四錐中,,底面ABCD為形,,點(diǎn)E為的AD中點(diǎn).

1)證明:平面平面PBE;

2)若,二面角的余弦值為,且,求PE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,為棱上的一點(diǎn),且平面.

1)證明:;

2)設(shè).與平面所成的角為.求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市場(chǎng)研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營狀況,對(duì)該公司2018年連續(xù)六個(gè)月的利潤進(jìn)行了統(tǒng)計(jì),并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司2019年3月份的利潤;

(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個(gè)月,但新材料的不穩(wěn)定性會(huì)導(dǎo)致材料損壞的年限不相同,現(xiàn)對(duì),兩種型號(hào)的新型材料對(duì)應(yīng)的產(chǎn)品各件進(jìn)行科學(xué)模擬測(cè)試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計(jì)如下表:

使用壽命

材料類型

個(gè)月

個(gè)月

個(gè)月

個(gè)月

總計(jì)

如果你是甲公司的負(fù)責(zé)人,你會(huì)選擇采購哪款新型材料?

參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中將底面為直角三角形且側(cè)棱垂直于底面的三棱柱稱為“塹堵”;底面為矩形,一條側(cè)棱垂直于底面的四棱錐稱之為“陽馬”;四個(gè)面均為直角三角形的四面體稱為“鱉膈”.如圖在塹堵ABC-A1B1C1中,ACBC,且AA1=AB=2.下列說法正確的是(

A.四棱錐B-A1ACC1為“陽馬”

B.四面體A1C1CB為“鱉膈”

C.四棱錐B-A1ACC1體積最大為

D.A點(diǎn)分別作AEA1B于點(diǎn)E,AFA1C于點(diǎn)F,則EFA1B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動(dòng)圓與圓內(nèi)切且與圓外切.

(1)求動(dòng)圓圓心的軌跡的方程;

(2)已知為平面內(nèi)的兩個(gè)定點(diǎn),過點(diǎn)的直線與軌跡交于,兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案