【題目】《九章算術(shù)》中將底面為直角三角形且側(cè)棱垂直于底面的三棱柱稱為“塹堵”;底面為矩形,一條側(cè)棱垂直于底面的四棱錐稱之為“陽(yáng)馬”;四個(gè)面均為直角三角形的四面體稱為“鱉膈”.如圖在塹堵ABC-A1B1C1中,AC⊥BC,且AA1=AB=2.下列說(shuō)法正確的是( )
A.四棱錐B-A1ACC1為“陽(yáng)馬”
B.四面體A1C1CB為“鱉膈”
C.四棱錐B-A1ACC1體積最大為
D.過(guò)A點(diǎn)分別作AE⊥A1B于點(diǎn)E,AF⊥A1C于點(diǎn)F,則EF⊥A1B
【答案】ABD
【解析】
根據(jù)新定義結(jié)合線面垂直的證明,對(duì)選項(xiàng)進(jìn)行逐一判斷,可得出答案.
底面為直角三角形且側(cè)棱垂直于底面的三棱柱稱為“塹堵”.
所以在塹堵ABC-A1B1C1中,AC⊥BC,側(cè)棱平面.
在選項(xiàng)A中. 所以,又AC⊥BC,且,則平面.
所以四棱錐B-A1ACC1為“陽(yáng)馬”,故A正確.
在選項(xiàng)B中. 由AC⊥BC,即,又且,所以平面.
所以,則為直角三角形.
又由平面,得為直角三角形.
由“塹堵”的定義可得為直角三角形,為直角三角形.
所以四面體A1C1CB為“鱉膈”,故B正確.
在選項(xiàng)C中. 在底面有,即當(dāng)且僅當(dāng)時(shí)取等號(hào).
,所以C不正確.
在選項(xiàng)D中.由上面有平面,則,AF⊥A1C且,則平面
所以,AE⊥A1B且,則平面,則,所以D正確.
故選:ABD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件),已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).
(1)設(shè)生產(chǎn)部件的人數(shù)為,分別寫(xiě)出完成三種部件生產(chǎn)需要的時(shí)間;
(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開(kāi)工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】地球的公轉(zhuǎn)軌道可以看作是以太陽(yáng)為一個(gè)焦點(diǎn)的橢圓,根據(jù)開(kāi)普勒行星運(yùn)動(dòng)第二定律,可知太陽(yáng)和地球的連線在相等的時(shí)間內(nèi)掃過(guò)相等的面積,某同學(xué)結(jié)合物理和地理知識(shí)得到以下結(jié)論:①地球到太陽(yáng)的距離取得最小值和最大值時(shí),地球分別位于圖中點(diǎn)和點(diǎn);②已知地球公轉(zhuǎn)軌道的長(zhǎng)半軸長(zhǎng)約為千米,短半軸長(zhǎng)約為千米,則該橢圓的離心率約為.因此該橢圓近似于圓形:③已知我國(guó)每逢春分(月日前后)和秋分(月日前后),地球會(huì)分別運(yùn)行至圖中點(diǎn)和點(diǎn),則由此可知我國(guó)每年的夏半年(春分至秋分)比冬半年(當(dāng)年秋分至次年春分)要少幾天.以上結(jié)論正確的是( )
A.①B.①②C.②③D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)經(jīng)濟(jì)高速發(fā)展,人民的生活水平越來(lái)越高,部分學(xué)校安裝了中央空調(diào),某校數(shù)學(xué)建模隊(duì)調(diào)查了某品牌中央空調(diào),得到該設(shè)備使用年限x(單位:年)和維修總費(fèi)用y(單位:萬(wàn)元)的統(tǒng)計(jì)表如下:(每年年底維修保養(yǎng))
使用年限x(單位:年) | 2 | 3 | 4 | 5 | 6 |
維修總費(fèi)用y(單位:萬(wàn)元) | 1 | 3 | 4 |
由上表可得線性回歸方程,則根據(jù)此模型預(yù)報(bào)該品牌中央空調(diào)第8年年底的維修費(fèi)用約為( )
A.萬(wàn)元B.萬(wàn)元C.萬(wàn)元D.萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了對(duì)某種商品進(jìn)行合理定價(jià),需了解該商品的月銷售量(單位:萬(wàn)件)與月銷售單價(jià)(單位:元/件)之間的關(guān)系,對(duì)近個(gè)月的月銷售量和月銷售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測(cè)數(shù)據(jù)如表所示:
月銷售單價(jià)(元/件) | ||||||
月銷售量(萬(wàn)件) |
(1)若用線性回歸模型擬合與之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線方程分別為:,和,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識(shí),判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說(shuō)明理由;
(2)若用模型擬合與之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為和,請(qǐng)用說(shuō)明哪個(gè)回歸模型的擬合效果更好;
(3)已知該商品的月銷售額為(單位:萬(wàn)元),利用(2)中的結(jié)果回答問(wèn)題:當(dāng)月銷售單價(jià)為何值時(shí),商品的月銷售額預(yù)報(bào)值最大?(精確到)
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的左右焦點(diǎn)分別為F1,F2點(diǎn).M為橢圓上的一動(dòng)點(diǎn),△MF1F2面積的最大值為4.過(guò)點(diǎn)F2的直線l被橢圓截得的線段為PQ,當(dāng)l⊥x軸時(shí),.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)F1作與x軸不重合的直線l,l與橢圓交于A,B兩點(diǎn),點(diǎn)A在直線上的投影N與點(diǎn)B的連線交x軸于D點(diǎn),D點(diǎn)的橫坐標(biāo)x0是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為考察某動(dòng)物疫苗預(yù)防某種疾病的效果,現(xiàn)對(duì)200只動(dòng)物進(jìn)行調(diào)研,并得到如下數(shù)據(jù):
未發(fā)病 | 發(fā)病 | 合計(jì) | |
未注射疫苗 | 20 | 60 | 80 |
注射疫苗 | 80 | 40 | 120 |
合計(jì) | 100 | 100 | 200 |
(附:)
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
則下列說(shuō)法正確的:( )
A.至少有99.9%的把握認(rèn)為“發(fā)病與沒(méi)接種疫苗有關(guān)”
B.至多有99%的把握認(rèn)為“發(fā)病與沒(méi)接種疫苗有關(guān)”
C.至多有99.9%的把握認(rèn)為“發(fā)病與沒(méi)接種疫苗有關(guān)”
D.“發(fā)病與沒(méi)接種疫苗有關(guān)”的錯(cuò)誤率至少有0.01%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),左焦點(diǎn)、右焦點(diǎn)都在軸上,點(diǎn)是橢圓上的動(dòng)點(diǎn),的面積的最大值為,在軸上方使成立的點(diǎn)只有一個(gè).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的兩直線,分別與橢圓交于點(diǎn),和點(diǎn),,且,比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的焦點(diǎn)為F,準(zhǔn)線為,交x軸于點(diǎn)A,并截圓所得弦長(zhǎng)為,M為平面內(nèi)動(dòng)點(diǎn),△MAF周長(zhǎng)為6.
(1)求拋物線方程以及點(diǎn)M的軌跡的方程;
(2)“過(guò)軌跡的一個(gè)焦點(diǎn)作與軸不垂直的任意直線”交軌跡于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),則為定值,且定值是”.命題中涉及了這么幾個(gè)要素:給定的圓錐曲線,過(guò)該圓錐曲線焦點(diǎn)的弦,的垂直平分線與焦點(diǎn)所在的對(duì)稱軸的焦點(diǎn),的長(zhǎng)度與、兩點(diǎn)間距離的比值.試類比上述命題,寫(xiě)出一個(gè)關(guān)于拋物線的類似的正確命題,并加以證明.
(3)試推廣(2)中的命題,寫(xiě)出關(guān)于拋物線的一般性命題(不必證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com