A. | 30° | B. | 45° | C. | 60° | D. | 90° |
分析 求異面直線所成的角,通過將異面直線的一條平移與另外一條相交,即可求異面直線所成的角.取AC,BC1的中點(diǎn),M,N,連接EM,MN,F(xiàn)M,證明EF∥MN,那么MN與直線BC1所成的角就是EF和BC1所成的角.
解答 解:取AC,BC1的中點(diǎn),M,N,連接EM,MN,F(xiàn)N,
∵點(diǎn)E、F分別是棱AB、BB1的中點(diǎn),
∴EM${\;}_{=}^{∥}\frac{1}{2}$BC,F(xiàn)N${\;}_{=}^{∥}\frac{1}{2}$B1C1,
∵BC=B1C1
∴FN${\;}_{=}^{∥}$EM
所以:四邊形EFNM是平行四邊形.
則有:EF∥MN.
那么:MN與直線BC1所成的∠BNM就是EF和BC1所成的角.
設(shè):AB=BC=AA1=a,作BC中點(diǎn)G,連接MB,NG,GM.
BN=$\frac{\sqrt{2}}{2}a$,NM=$\frac{\sqrt{2}}{2}a$,BM=$\frac{\sqrt{2}}{2}a$,
△BNM是等邊三角形,∠BNM=60°,即EF和BC1所成的角為60°.
故選:C.
點(diǎn)評 本題考查了求異面直線所成的角的證明和計(jì)算,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若${\overrightarrow a^2}$+${\overrightarrow b^2}$=0,則$\overrightarrow a$=$\overrightarrow b$=$\overrightarrow 0$ | |
B. | 若k∈R,k$\overrightarrow a$=$\overrightarrow 0$,所以k=0或$\overrightarrow a$=$\overrightarrow 0$ | |
C. | 若$\overrightarrow a$•$\overrightarrow b$=0,則$\overrightarrow a$=$\overrightarrow 0$或$\overrightarrow b$=$\overrightarrow 0$ | |
D. | 若$\overrightarrow a$,$\overrightarrow b$都是單位向量,則$\overrightarrow a$•$\overrightarrow b$≤1恒成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①、② | B. | ①③ | C. | ②、③ | D. | ② |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e1•e2>1 | B. | e1•e2<1 | ||
C. | e1•e2=1 | D. | e1•e2與1大小不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com