6.已知平面α、β、γ及直線l,m,l⊥m,α⊥γ,γ∩α=m,γ∩β=l,以此作為條件得出下面三個結(jié)論:①β⊥γ ②l⊥α ③m⊥β,其中正確結(jié)論是( 。
A.①、②B.①③C.②、③D.

分析 做出圖形α,β,m,l,過l作平面β,根據(jù)β的位置進(jìn)行判斷.

解答 解:在γ內(nèi)作直線l⊥m,過l做平面β,則β可能與γ垂直,也可能不與γ垂直,故①錯誤;
同理,β也可能與m垂直,也可能與m不垂直,故③錯誤;
∵α⊥γ,γ∩α=m,l⊥m,l?γ,
∴l(xiāng)⊥α,故②正確;
故選:D.

點評 本題考查了空間線面位置關(guān)系的判斷,結(jié)合圖形進(jìn)行分析,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]g{x},g(x)=x-1,當(dāng)0≤x≤k時,不等式f(x)<g(x)的解集區(qū)間的長度為10,則 k=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在極坐標(biāo)系中,直線l的方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,則點A(2,-$\frac{π}{4}$)到直線l的距離為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2-$\frac{\sqrt{2}}{2}$D.2+$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=25x3+13x2+2016x-5,則f'(0)=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.定義在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)y=6cosx的圖象與y=9tanx的圖象的交點為P,過點P作PP1⊥x軸于點P1,直線PP1與y=sinx的圖象交于點P2,則線段P1P2的長為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知a=$\int_0^{\sqrt{6}}$2xdx,則(x-$\frac{1}{x}$)a的二項展開式中常數(shù)項為-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.光線從點A(-2,1)射到x軸后反射到B(4,3)則光線從A到B經(jīng)過的總路線為(  )
A.2$\sqrt{10}$B.2$\sqrt{13}$C.2$\sqrt{11}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,AB⊥BC,點E、F分別是棱AB、BB1的中點,則直線EF和BC1所成的角是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2sinxcos(x+$\frac{π}{3}$)+$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求函數(shù)f(x)的最大值與最小值及相應(yīng)的x的集合;
(2)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案