分析 (I)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(II)an•bn=(2n-1)•2n-1.利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.
解答 解:(I)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比q>0,∵a1=b1=1,a3+b2=7,S2+b2=6,
∴a3-(1+a2)=1,∴d=2,∴an=1+2(n-1)=2n-1.b2=7-a3=7-5=2.∴q=2,bn=2n-1.
(II)an•bn=(2n-1)•2n-1.
∴數(shù)列{an•bn}的前n項(xiàng)和Sn=1+3×2+5×22+…+(2n-1)×2n-1,
2Sn=2+3×22+…+(2n-3)×2n-1+(2n-1)×2n,
∴-Sn=1+2×(2+22+…+2n-1)-(2n-1)×2n=1+2×$\frac{2({2}^{n-1}-1)}{2-1}$-(2n-1)×2n=(3-2n)×2n-3,
∴Sn=(2n-3)×2n+3.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overline{x}$+a,s | B. | a$\overline{x}$,s2 | C. | a2$\overline{x}$,s2+a | D. | $\overline{x}$+a2,s+a2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (-∞,-1) | D. | (-∞,-1)和(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 13 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,+∞) | B. | (0,+∞) | C. | (1,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com