已知tanα=-
1
2
,則
1
sin2α
-sinαcosα-2cos2α=
 
考點(diǎn):二倍角的余弦,三角函數(shù)的化簡(jiǎn)求值,二倍角的正弦
專題:三角函數(shù)的求值
分析:原式分子、分母看做“1”,利用同角三角函數(shù)間基本關(guān)系化簡(jiǎn),再弦化切后將tanα的值代入計(jì)算即可求出值.
解答: 解:∵tanα=-
1
2

∴原式=
sin2α+cos2α
2sinαcosα
-
sinαcosα+2(-sin2α+cos2α)
sin2α+cos2α

=
tan2α+1
2tanα
-
tanα+2(-tan2α+1)
tan2α+1

=
1
4
+1
-2×
1
2
-
-
1
2
+2×(-
1
4
+1)
1
4
+1

=-
41
20

故答案為:-
41
20
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={1,2,3},B={2,3,4,5},則A∪B=( 。
A、{6,7,8}
B、{1,4,5,6,7,8}
C、{2,3}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖中陰影部分表示的集合是( 。
A、∁U(A∪B)
B、A∩(∁UB)
C、∁U(A∩B)
D、∁B(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x-2>0},B={x|
1
2
2x<8}

(1)求A∩B和A∪B;
(2)若記符號(hào)A-B={x|x∈A,x∉B},在圖中把表示“集合A-B”的部分用陰影涂黑,求A-B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程1+
log2(2lga-x)
log2x
=2logx2有兩解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求直線y=x+1截拋物線y2=-4x所得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x+y≥0
x-y≥0
x≤a
(a為常數(shù))表示的平面區(qū)域面積為81,則x2+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(3,0),點(diǎn)P在圓x2+y2=1上,Q為PA的中點(diǎn),則Q的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合{0,a2,a+b}={1,a,
b
a
},則a2012+b2011
的值為( 。
A、0B、1C、-1D、±1

查看答案和解析>>

同步練習(xí)冊(cè)答案